Theoretical and Experimental Research on Hydraulic Fracturing

[+] Author and Article Information
M. E. Hanson

LLL Gas Simulation Program, Lawrence Livermore Laboratory, University of California, Livermore, Calif. 94550

G. D. Anderson, R. J. Shaffer

Lawrence Livermore Laboratory, University of California, Livermore, Calif. 94550

J. Energy Resour. Technol 102(2), 92-98 (Jun 01, 1980) (7 pages) doi:10.1115/1.3227857 History: Received March 03, 1980; Online October 22, 2009


We are conducting a joint theoretical/experimental research program on hydraulic fracturing. Newly developed two-dimensional numerical models (which include complete descriptions of the elastic continuum and porous flow fluids) have been applied to analyze the effects of pore pressure on the fracturing process. By means of small-scale experiments, we are acquiring a better understanding of the effects of the in-situ stress field, the porosity and permeability of the solid, and the presence of interfaces or layering in the solid. Experimentally, we have been studying the growth of cracks near an interface in several materials, including polymethylmethacrylate (PMMA), Nugget sandstone, and Indiana limestone. Results have shown that the mechanical properties of the interface relative to the properties of the materials on either side are important. A crack will not cross a well-bonded interface between two pieces of PMMA, even in the presence of a 13.79-MPa (2000-psi) normal load. Cracks will cross a well-bonded interface from PMMA to limestone, but not vice versa. Similarly, cracks will propagate across a bonded interface from Nugget sandstone to limestone, but not the other way. Pressure-driven cracks will cross an unbonded interface between limestone blocks at normal loads as low as 3.45 MPa (500 psi).

Copyright © 1980 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In