0
RESEARCH PAPERS

OTEC Power System Modeling, Analysis and Design via Geometric Programming

[+] Author and Article Information
A. Lavi

College of Engineering, Carnegie-Mellon University, Pittsburgh, Pa. 15213

J. Energy Resour. Technol 102(3), 154-159 (Sep 01, 1980) (6 pages) doi:10.1115/1.3227866 History: Received May 28, 1980; Online October 22, 2009

Abstract

A complex power system may be modeled by a system of inequalities representing the constraints imposed by the physical laws: heat transfer, energy balance, cycle efficiency and so forth. The nature of the resulting mathematical model is such that the terms contain complex expressions involving the design and operating variables of the process. With the addition of an objective function involving the cost of major system components, a multivariable nonlinear programming problem can be formulated. Seldom does the model lend itself to analytical treatment. This paper is concerned with a specific formulation and solution of nonlinear programming problems which arise in the design of ocean thermal energy conversion (OTEC) power plants. The technique used is geometric programming, GP. It is shown that GP serves as an excellent tool for system analysis because it provides sensitivity information essential to the designer.

Copyright © 1980 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In