0
RESEARCH PAPERS

Nonlinear Static Analysis of Deep Ocean Mining Pipe—Part I: Modeling and Formulation

[+] Author and Article Information
C. A. Felippa, J. S. Chung

Ocean Resources Engineering Program, Colorado School of Mines, Golden, Colo. 80401

J. Energy Resour. Technol 103(1), 11-15 (Mar 01, 1981) (5 pages) doi:10.1115/1.3230807 History: Received November 13, 1979; Revised December 01, 1980; Online October 22, 2009

Abstract

A static analysis procedure is formulated and implemented for the numerical determination of nonlinear static equilibrium configurations of deep ocean risers or mining pipes. This implementation involves selection of a finite element model, modeling of structure, surface and subsurface environment and external forces, and solution of nonlinear equilibrium equations. The riser is modeled by three-dimensional beam finite elements which include axial, bending, and torsional deformations. These deformations are coupled through geometrically nonlinear effects. The resulting tangent-stiffness matrix includes three contributions identified as linear, geometric (initial-stress) and initial-displacment stiffness matrices. For the solution, a combination of load-parameter incrementation, state updating of fluid properties, and corrective Newton-Raphson iteration is used. The resulting riser configuration reflects the realistic modeling of environments and external forces. The static equilibrium solution can be used as initial condition for vibration or transient analysis. Numerical studies are presented in Part II of this paper.

Copyright © 1981 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In