RESEARCH PAPERS: Offshore Mechanics and Arctic Engineering

In-Line Forces on Vertical Cylinders in Deepwater Waves

[+] Author and Article Information
T. H. Dawson

Department of Naval Systems Engineering, U.S. Naval Academy, Annapolis, MD 21402

J. Energy Resour. Technol 107(1), 18-23 (Mar 01, 1985) (6 pages) doi:10.1115/1.3231156 History: Received March 14, 1984; Revised June 25, 1984; Online October 22, 2009


Laboratory measurements of the total in-line forces on a fixed vertical 2-in-dia cylinder in deep-water regular and random waves are given and compared with predictions from the Morison equation. Results show, for regular waves with heights ranging from 2 to 22 in. and frequencies ranging from 0.4 to 0.9 Hz that the Morison equation, with Stokes wave theory and constant drag and inertia coefficients of 1.2 and 1.8, respectively, provides good agreement with the measured maximum wave forces. The force variation over the entire wave cycle is also well represented. The linearized Morison equation, with linear wave theory and the same coefficients likewise provides close agreement with the measured rms wave forces for irregular random waves having approximate Bretschneider spectra and significant wave heights from 5 to 14 in. The success of the constant-coefficient approximation is attributed to a decreased dependence of the coefficients on dimensionless flow parameters as a result of the circular particle motions and large kinematic gradients of the deep-water waves.

Copyright © 1985 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In