Thermal-Hydraulics of OC-OTEC Spout Flash Evaporators

[+] Author and Article Information
S. M. Ghiaasiaan

George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332

J. Energy Resour. Technol 114(3), 187-196 (Sep 01, 1992) (10 pages) doi:10.1115/1.2905940 History: Received September 24, 1991; Revised April 30, 1992; Online April 16, 2008


A mechanistic model was developed for the thermal-hydraulic processes in the spout flash evaporator of an OC-OTEC plant. Nonequilibrium, two-fluid, conservation equations were solved for the two-phase flow in the spout, accounting for evaporation at the gas-liquid interface, and using a two-phase flow regime map consisting of bubbly, churn-turbulent and dispersed droplet flow patterns. Solution of the two-phase conservation equations provided the flow conditions at the spout exit, which were used in modeling the fluid mechanics and heat transfer in the evaporator, where the liquid was assumed to shatter into a spray with a log-normal size distribution. Droplet size distribution was approximated by using 30 discrete droplet size groups. Droplet momentum conservation equations were numerically solved to obtain the residence time of various droplet size groups in the evaporator. Evaporative cooling of droplets was modeled by solving the 1-D heat conduction equation in spheres, and accounting for droplet internal circulation by an empirical thermal diffusivity multiplier. The model was shown to favorably predict the available single-spout experimental data.

Copyright © 1992 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In