Submerged Electric Arc Decomposition of Methanol for Cold-Starting Methanol-Fueled Engines

[+] Author and Article Information
R. Sethuraman, H. W. Parker, T. T. Maxwell, J. C. Jones

Departments of Chemical and Mechanical Engineering, Texas Tech University, Lubbock, TX 79409

J. Energy Resour. Technol 116(2), 155-160 (Jun 01, 1994) (6 pages) doi:10.1115/1.2906021 History: Received January 06, 1993; Revised March 22, 1994; Online April 16, 2008


Methanol is an attractive alternative fuel based on its engine performance and emission characteristics. Methanol can be synthesized from biomass or urban waste, and as a result, it does not contribute to the net addition of carbon dioxide to the atmosphere. Cold-starting of methanol-fueled engines is difficult at temperatures below 10°C, and at sub-zero temperatures, starting may be impractical without significant engine modifications. In this research, an attempt has been made to study and prevent the cold-starting problem by using hydrogen and carbon monoxide gas mixture produced by decomposing liquid methanol using a submerged electric arc device. The electric arc has the advantage of instantaneous gas production and the experimental data relating to the performance of the device and its design are reported. The device is capable of producing up to 0.01 cu m (10 L) per min of a gas which is primarily carbon monoxide and hydrogen with a thermal efficiency of 18 percent relative to the theoretical energy requirements for methanol decomposition. The feasibility of using this arc device is analyzed based on the simulated cold-starting data collected for a single-cylinder Kawasaki engine at −20°C.

Copyright © 1994 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In