High Heat Flux Absorption Utilizing Porous Materials With Two-Phase Heat Transfer

[+] Author and Article Information
J. T. Dickey, G. P. Peterson

Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843

J. Energy Resour. Technol 119(3), 171-179 (Sep 01, 1997) (9 pages) doi:10.1115/1.2794986 History: Received November 04, 1995; Revised February 25, 1997; Online November 06, 2007


By combining two-phase heat transfer with forced convective flow through a porous material, a new heat transfer scheme emerges with the ability to absorb high heat fluxes without the corresponding temperature increase encountered in single-phase systems. In general, flow-through sintered metals are characterized by high thermal conductivity due to the metallic media, and a fluid flow which on the macro scale can be described as slug flow in nature. These same characteristics are exhibited by liquid metal flow cooling systems. To predict the heat transfer attributes of this two-phase flow process, a semi-analytical model was developed using the conservation equations of mass, momentum, and energy along with the apparent physical properties of the composite material. The results indicate that when a heat flux is applied to one side of the bounding surface and adiabatic conditions exist on the remaining sides, the surface temperature asymptotically approaches the same value regardless of the mass flow rate. In addition to the analytical results, definitions for the convection coefficient and Nusselt number for flow-through porous materials with phase change are presented.

Copyright © 1997 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In