Optimization of the Storage Process for a Cool Thermal Storage System

[+] Author and Article Information
M. M. Abraham, K. Annamalai, D. E. Claridge

Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843-3123

J. Energy Resour. Technol 119(4), 236-241 (Dec 01, 1997) (6 pages) doi:10.1115/1.2794996 History: Received July 27, 1995; Revised May 22, 1997; Online November 06, 2007


The storage process for a static-water ice-on-coil cool thermal storage system is difficult to model analytically, based on the dynamic behavior of ice production. Systems that utilize a vapor-compression cycle, with the tank acting as an evaporator, further complicate an analytical model due to the two-phase heat transfer throughout the storage tank. This analysis presents a simplified model of the storage process for a static-water ice-on-coil storage tank acting as an evaporator in a vapor-compression cycle. Specifically, the storage process is optimized by minimizing the amount of compressor work required to freeze water at 0°C. Optimization variables are refrigerant evaporating temperatures and tank heat exchanger sizing. The dynamics office production and two-phase heat transfer are simplified by assuming the overall heat transfer coefficient remains constant throughout the storage process. An average value for the overall heat transfer coefficient may be substituted and still provide useful results. A second law analysis utilizing the irreversibility developed during cool storage is also presented. The model is then used in side-by-side comparisons of compressor work, tank heat exchanger efficiency, and irreversibility, as functions of evaporating temperature, for several heat exchanger sizes.

Copyright © 1997 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In