Drag Reduction in Heavy Oil

[+] Author and Article Information
D. A. Storm, R. J. McKeon, H. L. McKinzie, C. L. Redus

Texaco Inc., Exploration & Production Department, 3901 Briarpark, Houston, TX 77042-5301

J. Energy Resour. Technol 121(3), 145-148 (Sep 01, 1999) (4 pages) doi:10.1115/1.2795973 History: Received October 13, 1998; Revised May 10, 1999; Online November 06, 2007


Transporting heavy crude oil by pipeline requires special facilities because the viscosity is so high at normal field temperatures. In some cases the oil is heated with special heaters along the way, while in others the oil may be diluted by as much as 30 percent with kerosene. Commercial drag reducers have not been found to be effective because the single-phase flow is usually laminar to only slightly turbulent. In this work we show the effective viscosity of heavy oils in pipeline flow can be reduced by a factor of 3–4. It is hypothesized that a liquid crystal microstructure can be formed so that thick oil layers slip on thin water layers in the stress field generated by pipeline flow. Experiments in a 1 1/4-in. flow loop with Kern River crude oil and a Venezuela crude oil BCF13 are consistent with this hypothesis. The effect has also been demonstrated under field conditions in a 6-in. flow loop using a mixture of North Sea and Mississippi heavy crude oils containing 10 percent brine.

Copyright © 1999 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In