Stability of Flames Close to Auto-Ignition Temperatures Generated by Extreme Separated Gas-Air Inlets

[+] Author and Article Information
O. Piepers, P. P. Breithaupt, A. B. N. van Beelen

N.V. Nederlandse Gasunie, 9700 MA Groningen, The Netherlands

J. Energy Resour. Technol 123(1), 50-58 (Nov 06, 2000) (9 pages) doi:10.1115/1.1345731 History: Received March 15, 2000; Revised November 06, 2000
Copyright © 2001 by ASME
Your Session has timed out. Please sign back in to continue.


Visser, B. M., 1995, “Verbranding met gescheiden gas/lucht injectie; een studie naar een nieuwe low NOx techniek,” Internal communication, Gasunie.
Wünning, J., 1990, patent EP 0 463 218 A1.
Wünning,  J. A., and Wünning,  J. G., 1995, “Burner Design for Flameless Oxidation With Low NO-Formation Even at Maximum Air Preheat,” Ind. Heat., 62, No. 1, pp. 24–28.
Nakamachi, I., et al., 1988, patent EP 0 343 746 A2.
Matsumoto, M., Nakamachi, I., Yasuoka, S., Saiki, N., and Koizumi, T., 1995, “Advanced Fuel Direct Injection-FDI-System,” Proc., 11th IFRF Members Conference.
Haep, J., and Flamme, M., 1994, “Untersuchung der NOx-emission bei flammenloser Oxidation und Ofenraumtemperaturen bis 1600°C und Ermittlung des Wirkungsgrades eines FLOX-Brenners im Vergleich zu einem konventionellen Brenner,” Gas Wärme Institut.
Blevins, R. D., Applied Fluid Dynamics Handbook, Krieger Publ., ISBN 0-89464-717-2, Chap. 9.
Beér, J. M., and Chigier, N. A., 1972, Combustion Aerodynamics, Applied Science Publishers, London, UK.
Grandmaison,  E. W., Yimer,  I., Becker,  H. A., and Sobiesiak,  A., 1998, “The Strong-Jet/Weak-jet Problem and Aerodynamic Modeling of the CGRI Burner,” Combust. Flame, 114, pp. 381–396.
Patankar, Su. V., 1980, “Numerical Heat Transfer and Fluid Flow,” Series in Computational Methods in Mechanics and Thermal Sciences, McGraw-Hill, New York.
Tennekes, H., and Lumley, J. L., 1972, A First Course in Turbulence, The MIT Press, Cambridge, MA and London, England.
Weber, R., Peters, A. A. F. P., Breithaupt, P. P., and Visser, B. M. V., 1993, “Mathematical Modeling of Swirling Pulverized Coal Flames: What can Combustion Engineers expect from Modeling?,” The American Society of Mechanical Engineers (ASME). FACT, Vol. 17, pp. 71–86.
Kremer,  H., 1993, “Einsatz der physikalischen und mathematischen Modellierung bei der Entwicklung neuer Brennergenerationen,” Gas Wärme Int., 42, No. (1-1), pp. 55–68.
Visser, B. M., 1991, “Mathematical Modelling of Swirling Pulverised Coal Flames,” dissertation, Technical University Delft, The Netherlands.
Philipp, M., 1991, “Experimentelle und theoretische Untersuchungen zum Stabilitätsverhalten von Drallflammen mit zentraler Rückströmzone,” dissertation: Universität Fridericiana Karlsruhe (Technische Hochschule).
Kjäldman, L., 1993, “Numerical simulation of combustion and nitrogen pollutants in furnaces,” dissertation: Technical Research Center of Finland, VTT Publications 159, 132 pp.
Breithaupt, P. P., Peters, A. A. F., Piana, C. S., and Weber, R., 1994, “Research, development and implementation of simultaneous low NOx/CO combustion technology for gaseous fuel firing in the iron and steel industry: Mathematical modelling of natural gas, coke-oven flames and reheating furnaces,” IJmuiden: IFRF Doc.Nr. F42/y/6.
Fluent Inc, 1996, “User Guide Fluent V4.4,” Chap. 19.
Pitts,  W. M., 1989, “Importance of Isothermal Mixing Processes to the Understanding of Lift-Off and Blowout of Turbulent Jet Diffusion Flames,” Combustion and Flame, 76, pp. 197–212.
Dahm,  W. J. A., and Mayman,  A. G., 1990, “Blowout Limits of Turbulent Jet Diffusion Flames for Arbitrary Source Conditions,” AIAA J., 28, No. 7, pp. 1157–1162.
Janssen, L. P. B. M., and Warmoeskerken, M. M. C. G., 1991, “Transport Phenomena Data Companion,” Technical University, 2nd Edition, Delft, The Netherlands.
Breithaupt, P. P., 1998, “Analysis of local turbulent reaction rates from CFD predictions of a 2 MW natural gas fired Turbulent diffusion flame,” Proc., International Symposium on Computational Technologies for Fluid/Mechanical/Chemical Systems With Industrial Applications, ASME/JSME Meeting, San Diego, CA, July 26–30, pp. 131–144.
Wierzba, I., and Karim, G. A., 1989, “The Flame Propagation Limits of Rich Methane-Gaseous Fuels-Diluents-Mixtures in Air,” Proc., COBEM 89: 10. Brazilian Congress on Mechanical Engineering (Anais do COBEM 89: 10. Congresso Brasileiro de Engenharia Mecanica, eds., M. H. Hirata, J. L. Scieszko, R. M. Cotta, R. A. Tenenbaum, S. L. V. Coelho, Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia, pp. 637–641.
Ale, B. B., and Wierzba, I., 1997, “The Flammability Limits of Hydrogen and Methane in Air at Moderately Elevated Temperatures,” Proc., Thirty-Second Intersociety Energy Conversion Engineering Conference, Vol. 2: Electrochemical Technologies, Conversion Technologies, and Thermal Management, New York, NY, American Inst. of Chemical Engineers, pp. 938–943.
Wierzba,  I., and Ale,  B. B., 1999, “The Effect of Time of Exposure to Elevated Temperatures on the Flammability Limits of Some Common Gaseous Fuels in Air,” ASME J. Eng. Gas Turbines Power, 121, pp. 74–79; also, ASME Turbo Expo ’98, Stockholm, Sweden, June 2–5.
Geerssen, T. M., 1988, “Physical Properties of Natural Gases,” NV Nederlandse Gasunie.


Grahic Jump Location
Correlation between adiabatic flame temperature and NOx formation 1
Grahic Jump Location
Example flameless oxidation system
Grahic Jump Location
Schematic diagram of the test furnace
Grahic Jump Location
Photograph of the 90kW test furnace showing central gas inlet and air side ports
Grahic Jump Location
Schematic representation of engineering key figures in flameless oxidation
Grahic Jump Location
Stability ratio versus distance between air nozzles (90-kW experiments, 10 percent excess air)
Grahic Jump Location
Stability ratio and calculated recirculation factor (Kν) at 20dj as a function of air nozzle distance (90 kW, 10 percent excess air)
Grahic Jump Location
Minimum furnace temperature as a function of percentage secondary air at different air nozzle separations (90-kW system, four jets, dj=10.6,n=1.1, furnace diameter=550 mm)
Grahic Jump Location
Minimum load as a function of percentage secondary air at different air nozzle separations (90-kW system, four jets, dj=10.6,n=1.1, furnace diameter=550 mm)
Grahic Jump Location
Flammability limits for methane-air mixture 26




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In