0
TECHNICAL PAPERS

Entropies of Statistical Mechanics and Disorder Versus the Entropy of Thermodynamics and Order

[+] Author and Article Information
Elias P. Gyftopoulos

Massachusetts Institute of Technology, Cambridge, MA 02139e-mail: epgyft@aol.com

J. Energy Resour. Technol 123(2), 110-118 (Dec 13, 2000) (9 pages) doi:10.1115/1.1368122 History: Received August 01, 2000; Revised December 13, 2000
Copyright © 2001 by ASME
Your Session has timed out. Please sign back in to continue.

References

Clausius, R., 1867, “On Different Forms of the Fundamental Equations of the Mechanical Theory of Heat and their Convenience for Application,” The Second Law of Thermodynamics, 1976, J. Kestin, ed., Dowden, Hutchinson, and Ross, Inc., Stroudsburg, PA, pp. 162–193.
Maxwell, J. C., 1871, Theory of Heat, Longmans, Green and Co., London, UK, Chapter 12.
McQuarrie, D. A., 1973, Statistical Thermodynamics, Harper and Row, New York, NY.
Callen, H. B., 1985, Thermodynamics and an Introduction to Thermostatics, 2nd Edition, John Wiley and Sons, New York, NY.
Tolman, R. C., 1962, The Principles of Statistical Mechanics, Oxford University Press, London, UK, pp. 16–42.
Thomson,  W., 1879, “The Sorting Demon of Maxwell,” R. Soc. Proc., 9, pp. 113–114.
Brush, S. G., 1986, The Kind of Motion We Call Heat, North-Holland, New York, p. 83.
Brush, S. G., 1986, ibid., pp. 231–243.
Brush, S. G., 1986, ibid., pp. 80–89.
Brillouin, L., 1962, Science and Information Theory, Academic Press Inc., New York, pp. 160–161.
Feynmann, R.P., Leighton, R. B., and Sands, M., 1963, The Feynmann Lectures on Physics, Addison Wesley Publishing Co., Reading, MA, pp. 46-1–46-9.
Penrose, R., 1989, The Emperor’s New Mind, Oxford University Press, New York, NY, pp. 308–310.
Denbigh, K., 1968, The Principles of Chemical Equilibrium, Cambridge University Press, London, UK, pp. 55–56.
Gyftopoulos, E.P., and Beretta, G. P., 1991, Thermodynamics: Foundations and Applications, Macmillan, New York, NY, pp. 10–17, 20.
Gyftopoulos, E. P., and Beretta, G. P., 1991, ibid., Ch. 5.
Hatsopoulos,  G. N., and Gyftopoulos,  E. P., 1976, “A Unified Quantum Theory of Mechanics and Thermodynamics. Part I. Postulates,” Found. Phys., 6, No. 1, pp. 15–31.
Hatsopoulos,  G. N., and Gyftopoulos,  E. P., 1976, “A Unified Quantum Theory of Mechanics and Thermodynamics. Part IIa. Available Energy,” Found. Phys., 6, No. 2, pp. 127–141.
Hatsopoulos,  G. N., and Gyftopoulos,  E. P., 1976, “A Unified Quantum Theory of Mechanics and Thermodynamics. Part IIb. Stable Equilibrium States,” Found. Phys., 6, No. 4, pp. 439–455.
Hatsopoulos,  G. N., and Gyftopoulos,  E. P., 1976, “A Unified Quantum Theory of Mechanics and Thermodynamics. Part III. Irreducible Quantal Dispersions,” Found. Phys., 6, No. 5, pp. 561–570.
von Neumann, J., 1955, Mathematical Foundations of Quantum Mechanics, Princeton University Press, NJ.
Gyftopoulos,  E. P., and Çubukçu,  E., 1997, “Entropy: Thermodynamic Definition and Quantum Expression,” Phys. Rev., 55, No. 4, pp. 3851–3858.
Gyftopoulos, E. P., 1998, “Pictorial Visualization of the Entropy of Thermodynamics,” Proc., International Conference on Efficiency, Costs, Optimization, Simulation and Environmental Aspects of Energy Systems and Processes, M. Feidt et al., eds., Nancy, France, pp. 3–28.
Tolman, R. C., 1962, op. cit., pp. 335–339.
Beretta,  G. P., Gyftopoulos,  E. P., Park,  J. L., and Hatsopoulos,  G. N., 1984, “Quantum Thermodynamics. A New Equation of Motion for a Single Constituent of Matter,” Nuovo Cimento Soc. Ital. Fis., B, 82B, pp. 169–191.
Beretta,  G. P., Gyftopoulos,  E. P., and Park,  J. L., 1985, “Quantum Thermodynamics. A New Equation of Motion for a General Quantum System,” Nuovo Cimento Soc. Ital. Fis., B, 87B, No. 1, pp. 77–97.
Korsch,  J. H., and Steffen,  H., 1987, “Dissipative Quantum Dynamics, Entropy Production and Irreversible Evolution Towards Equilibrium,” J. Phys. A (Math. & Gen.), 20, pp. 3787–3808.
Çubukçu, E., and Gyftopoulos, E. P., 1995, “On the Equation of Motion of Thermodynamics”, Proc. International Conference on Efficiency, Costs, Optimization, Simulation and Environmental Impact of Energy Systems, Y. A. Gögüs et al., eds., Istanbul, Turkey, pp. 69–74.
Gyftopoulos, E. P., and Beretta, G. P., 1991, op. cit.
Gyftopoulos, E. P., and Beretta, G. P., 1991, op. cit., pp. 102–112.
Gyftopoulos,  E. P., 1998, “Thermodynamic Definition and Quantum-Theoretic Pictorical Illustration of Entropy,” ASME J. Energy Resour. Technol., 120, pp. 154–160.
Gyftopoulos, E. P., and Beretta, G. P., 1991, op. cit., pp. 186–205.
Brandt, H., and Dahmen, H. D., 1995, The Picture Book of Quantum Mechanics, 2nd Edition, Springer-Verlag, New York, NY, p. 106.
Leighton, R. B., 1959, Principles of Modern Physics, McGraw-Hill, New York, NY, pp. 178–179.
Beretta, G. P., and Gyftopoulos, E. P., 1990, “Electromagnetic Radiation: A Carrier of Energy and Entropy,” Fundamentals of Thermodynamics and Energy Analysis, AES20, G. Tsatsaronis et al., eds., Dallas, TX, pp. 1–6.
Leff, H. S., and Rex, A. F., 1990, Maxwell’s Demon: Entropy, Information, Computing, Princeton University Press, Princeton, NJ.
Gyftopoulos,  E. P., 1998, “Maxwell’s and Boltzmann’s Triumphant Contributions to and Misconceived Interpretations of Thermodynamics,” Int. J. Appl. Thermodynam., 1, Nos. 1–4, pp. 9–19.
von Smoluchowski, M., 1914, Vorträge über die Kinetische Theorie der Materie und der Elektrizität, Teubner, Leipzig, Germany pp. 89–121.
Lebowitz,  J. L., 1993, “Boltzmann’s Entropy and Time’s Arrow,” Phys. Today, 46, No. 9, pp. 32–38.
Jaynes,  E. T., 1957, “Information Theory and Statistical Mechanics,” Phys. Rev., 106, No. 4, pp. 620–630.
Jaynes,  E. T., 1957, “Information Theory and Statistical Mechanics. II,” Phys. Rev., 108, No. 2, pp. 171–190.
Katz, A., 1967, Principles of Statistical Mechanics, The Information Theory Approach, W. H. Freeman and Co., San Francisco, CA.

Figures

Grahic Jump Location
Configuration of four white (A) and four black (B) flashlight batteries on each side of the line P
Grahic Jump Location
One of the configurations with three white (A) and one black (B) batteries to the left of line P, and three black and one white batteries to the right of line P
Grahic Jump Location
Representation of a homogeneous ensemble
Grahic Jump Location
Energy versus entropy graph of a system with fixed values of amounts of constituents and volume, and without upper bound on energy
Grahic Jump Location
Time evolution of the shape of a wave packet in an infinitely deep, one-dimensional potential well 32

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In