0
TECHNICAL PAPERS

Numerical Modeling of an Industrial Aluminum Melting Furnace

[+] Author and Article Information
Angela O. Nieckele

Department of Mechanical Engineering, Pontifı́cia Universidade Católica do Rio de Janeiro, Rua Marque⁁s de São Vicente, 225, 22453-900, Rio de Janeiro, Brazil

Mo⁁nica F. Naccache

Department of Mechanical Engineering, Pontifı́cia Universidade Católica do Rio de Janeiro, Rua Marque⁁s de São Vicente, 225, 22453-900, Rio de Janeiro, Brazil

Marcos S. P. Gomes

Department of Mechanical Engineering, Pontifı́cia Universidade Católica do Rio de Janeiro, Rua Marque⁁s de São Vicente, 225, 22453-900, Rio de Janeiro, Brazil

J. Energy Resour. Technol 126(1), 72-81 (May 04, 2004) (10 pages) doi:10.1115/1.1625396 History: Received July 01, 2002; Revised June 01, 2003; Online May 04, 2004
Copyright © 2003 by ASME
Your Session has timed out. Please sign back in to continue.

References

Goldin,  G. M., and Menon,  S. A., 1998, “Comparison of Scalar PDF Turbulent Combustion Models,” Combust. Flame, 113(3), pp. 442–453.
Gran,  I. R., Ertesva⁁g,  I. S., and Magnussen,  B. F., 1997, “Influence of Turbulence Modeling on Predictions of Turbulent Combustion,” AIAA J., 35(1), pp. 106–110.
Ma,  C. Y., Mahmud,  T., Gaskell,  P. H., and Hampartsoumian,  E., 1999, “Numerical Predictions of a Turbulent Diffusion Flame in a Cylindrical Combustor Using Eddy Dissipation and Flamelet Combustion Models,” Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 213(7), pp. 697–705.
Zimont,  V., Polifke,  W., and Bettelini,  M., 1998, “An Efficient Computational Model for Premixed Turbulent Combustion at High Reynolds Numbers Based on a Turbulent Flame Speed Closure,” J. Eng. Gas Turbines Power, 120(3), pp. 526–532.
Goldin, G., and Choudhury, D., 2001, “Steady State Simulation of a Methane-Air Partially Premixed Turbulent Flame,” 2001 ASME-IMECE, USA, CD-ROM, HTD-24233.
Nieckele, A. O., Naccache, M. F., Gomes, M. S. P., Carneiro, J. N. E., and Serfaty, R., 2001, “Models Evaluations of Combustion Process in a Cylindrical Furnace,” 2001 ASME-IMECE, USA, CD-ROM, HTD 24232.
Song,  G., Bjorge,  T., Holen,  J., and Magnussen,  B. F., 1997, “Simulation Of Fluid Flow And Gaseous Radiation Heat Transfer In A Natural Gas-Fired Furnace,” Int. J. Numer. Methods Heat Fluid Flow, 7, pp. 169–182.
Hill,  S. C., Webb,  B. W., McQuay,  M. Q., and Newbold,  J., 2000, “Numerical Modeling Of An Industrial Glass-Melting Furnace,” J. Inst. Energy, 73, pp. 2–11.
Baltasar,  J., Carvalho,  M. G., Coelho,  P., and Costa,  M., 1997, “Flue Gas Recirculation in a Gas-Fired Laboratory Furnace: Measurements and Modelling,” Flue, 76(20), pp. 919–929.
Kremer,  H., May,  F., and Wirtz,  S., 2001, “The Influence of Furnace Design on the NO Formation in High Temperature Process,” Energy Convers. Manage., 42, pp. 1937–1952.
Nieckele, A. O., Naccache, M. F., Gomes, M. S. P., and Kobayashi, W., 1997, “Numerical Simulation of a Three Dimensional Aluminum Melting Furnace,” Proc. 4th Int. Conf. on Technology and Combustion for a Clean Environment, Portugal, II (36.3), pp. 15–20.
Gomes, M. S. P., Nieckele, A. O., Naccache, M. F., and Kobayashi, W., 1997, “Numerical Investigation of the Oxygen Enriched Combustion Process in a Cylindrical Furnace,” Proc. 4th Int. Conf. on Technology and Combustion for a Clean Environment, Portugal, II (36.1), pp. 1–5.
Nieckele, A. O., Naccache, M. F., Gomes, M. S. P., and Kobayashi, W., 1998, “Numerical Investigation of The Staged Versus Non-Staged Combustion Process in an Aluminum Melting Furnace,” 1998 AIAA/ASME Joint Thermophysics and Heat Transfer Conf., USA, 1 , pp. 253–259.
Nieckele, A. O., Naccache, M. F., Gomes, M. S. P., and Kobayashi, W., 1999, “The Influence Of Oxygen Injection Configuration In The Performance Of An Aluminum Melting Furnace,” 1999 ASME-IMECE, USA, Heat Transfer Division, 2 , pp. 405–412.
Brewster,  B. S., Webb,  B. W., McQuay,  M. Q., D’Agostini,  M., and Baukal,  C. E., 2001, “Combustion Measurements And Modelling In An Oxygen-Enriched Aluminum-Recycling Furnace,” J. Inst. Energy, 74, pp. 11–17.
Mukhopadhyay, A., Puri, I. K., Zelepouga, S., and Rue, D. M., 2001, “Numerical Simulation of Methane-Air Nozzle Burners for Aluminum Remelt Furnaces,” 2001 ASME-IMECE, USA, CD-ROM, HTD-24234.
Ha,  J., and Zhu,  Z., 1998, “Computation of Turbulent Reactive Flows in Industrial Burners,” Appl. Math. Model., 22, pp. 1059–1070.
Zhou,  X., Sun,  Z., Durst,  F., and Brenner,  G., 1999, “Numerical Simulation of Turbulent Jet Flow and Combustion,” Comput. Math. Appl., 38, pp. 179–191.
Zhou,  L. X., Chen,  X. L., Zheng,  C. G., and Yin,  J., 2000, “Second-Order Moment Turbulence-Chemistry Model for Simulating NOx Formation in Gas Combustion,” Fuel, 79, pp. 1289–1301.
Zhou,  L. X., Qiao,  L., Chen,  X. L., and Zhang,  J., 2002, “A USM Turbulence-Chemistry Model for Simulating NOx Formation in Turbulent Combustion,” Fuel, 81, pp. 1703–1709.
Coelho,  P. J., and Peters,  N., 2001, “Numerical Simulation of a Mild Combustion Burner,” Combust. Flame, 124, pp. 503–518.
Veynante,  D., and Vervisch,  L., 2002, “Turbulent Combustion Modeling,” Prog. Energy Combust. Sci., 28, pp. 193–266.
Launder,  B. E., and Spalding,  D. B., 1974, “The Numerical Computation of Turbulent Flows,” Comput. Methods Appl. Mech. Eng., 3, pp. 269–289.
Carvalho, M. G., Farias, T., and Fontes, P., 1991, “Predicting Radiative Heat Transfer in Absorbing, Emitting, and Scattering Media Using the Discrete Transfer Method,” W.A. Fiveland et al., Fundamentals of Radiation Heat Transfer, ASME HTD, 160 , pp. 17–26.
Keramida,  E. P., Liakos,  H. H., Founti,  M. A., Boudouvis,  A. G., and Markatos,  N. C., 2000, “Radiative Heat Transfer in Natural Gas-Fired Furnaces,” Int. J. Heat Mass Transfer, 43, pp. 1801–1809.
Siegel, R., and Howell, J. R., 1981, Thermal Radiation Heat Transfer, 2nd edition, Hemisphere Publishing Corporation, NY.
Kuo, K. K., 1986, Principles of Combustion, John Wiley & Sons, NY.
Fluent User’s Guide (v.4.3). 1995, Fluent Inc., NH.
Patankar, S. V., and Spalding, D. B., 1967, Heat and Mass Transfer in Boundary Layers, Morgan-Grampian, London.
Smith,  T. F., Shen,  Z. F., and Friedman,  J. N., 1982, “Evaluation of Coefficients for the Weighted Sum of Gray Gases Model,” J. Heat Transfer, 104, pp. 602–608.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, NY.
Hutchinson,  B. R., and Raithby,  G. D., 1986, “A Multigrid Method Based on the Additive Correction Strategy,” Numer. Heat Transfer, 9, pp. 511–537.

Figures

Grahic Jump Location
Injection and chimney geometry: (a) frontal x-y plane; (b) y-z plane; (c) x-z plane
Grahic Jump Location
Injection configuration for the (a) burner; (b) parallel jets; (c) divergent jets.
Grahic Jump Location
Isosurface of T=2000 K. Parallel jet
Grahic Jump Location
Top view of the isosurface T=2000 K: (a) parallel jet, (b) divergent jet, (c) single burner
Grahic Jump Location
Temperature distribution (a) x=0.80 m,y=0.65 m and y=0.85 m, (b) y=0.65 m,z=0.25 m and y=0.50 m
Grahic Jump Location
Isotherms at furnace walls: (a) parallel jet, (b) divergent jet, (c) single burner
Grahic Jump Location
Total heat flux at the aluminum surface: (a) parallel jet, (b) divergent jet, (c) single burner.
Grahic Jump Location
Isosurfaces for the staged combustion parallel jet: (a) 1% CH4; (b) 5% O2; (c) 1% CO; (d) 50% CO2.
Grahic Jump Location
Methane distribution (a) x=0.80 m,y=0.65 m and y=0.85 m, (b) y=0.65 m,z=0.25 m and y=0.50 m.
Grahic Jump Location
Oxygen distribution (a) x=0.80 m,y=0.65 m and y=0.85 m, (b) y=0.65 m,z=0.25 m and y=0.50 m.
Grahic Jump Location
Carbon Monoxide distribution (a) x=0.80 m,y=0.65 m and y=0.85 m, (b) y=0.65 m,z=0.25 m and y=0.50 m
Grahic Jump Location
Carbon Dioxide distribution (a) x=0.80 m,y=0.65 m and y=0.85 m, (b) y=0.65 m,z=0.25 m and y=0.50 m
Grahic Jump Location
H2O distribution along the aluminum surface:(a) parallel jet, (b) divergent jet, (c) single burner

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In