Wu, C., and Kiang, R. L., 1990, “Work and power optimization of a finite time Brayton cycle,” Int. J. Ambient Energ., 11 , pp. 129–136.

Wu, C., and Kiang, R. S., 1991, “Power performance of a nonisentropic Brayton cycle,” ASME J. Eng. Gas Turbines Power, 113 , pp. 501–504.

Wu, C., Chen, L., and Sun, F., 1996, “Performance of regenerative Brayton heat engine,” Energy, 21 , pp. 71–76.

Curzon, F. L., and Alhbom, B., 1975, “Efficiency of Carnot heat engine at maximum power output,” Am. J. Phys., 43 , pp. 22–24.

Leff, H. S.. 1987, “Thermal efficiency at maximum power output: New results for old engines,” Am. J. Phys., 55 (7), pp. 602–610.

Bejan, A.. 1998, “Theory of Irreversible power plants,” Int. J. Heat Mass Transfer, 31 (6), pp. 1211–1219.

Wu, C., and Kiang, R. L., 1992, “Finite time thermodynamic analysis of a finite time Carnot heat engine with internal irreversibility,” Energy, 17 , pp. 1173–1178.

Nuwayhid, R. Y., and Moukalled, F.. 2001, “Optimum efficiency of multistage heat engines including heat leak,” "*Proc. Efficiency, Cost Optimization, Simulation and Environmental Aspects of Energy Systems and Processes Conference*", pp. 163–174.

Ibrahim, O. M., Klein, S. A., and Mitchell, J. W., 1991, “Optimum performance of Brayton cycle with nonisentropic processes,” ASME J. Eng. Gas Turbines Power, 113 , pp. 514–521.

Cheng, C. Y., and Chen, C. K., 1996, “Power optimization of an endoreversible regenerative Brayton cycle,” Energy, 21 (4), pp. 241–247.

Kaushik, S. C., and Tyagi, S. K., 2002, “Finite time thermodynamic analysis of a nonisentropic regenerative Brayton heat engine,” Int. J. Sol. Energy, 22 , pp. 141–151.

Kaushik, S. C., Singh, N., and Tyagi, S. K.. 1999, “Thermodynamic evaluation of a modified steam regenerative Brayton cycle for solar thermal power generation,” SESI-J., 9 (2), pp 63–75.

Vecchiarelli, J., Kawall, J. G., and Wallance, J. S., 1997, “Analysis of a concept for increasing the efficiency of Brayton cycle via isothermal heat addition,” Int. J. Energy Res., 21 , pp. 113–127.

Göktun, S., and Yavuz, H., 1999, “Thermal efficiency of a regenerative Brayton cycle with isothermal heat addition,” Energy Convers. Manage., 40 , pp. 1259–1266.

Tyagi, S. K., Kaushik, S. C., and Tyagi, B. K., 2000, “Thermodynamic evaluation of a regenerative closed cycle Brayton heat engine with isothermal heat addition,” "*National Renewable Energy Convention 2000*", November 30 December 2, IIT, Bombay (India), pp. 419–424.

Erbay, L. B., Göktun, S., and Yavuz, H., 2001, “Optimal design of the regenerative gas turbine engine with isothermal heat addition,” Appl. Energy, 68 , pp. 249–264.

Kaushik, S. C., Tyagi, S. K., and Singhal, M. K., 2003, “Parametric study of an irreversible regenerative closed cycle Brayton heat engine with isothermal heat addition,” Energy Convers. Manage., 44 , pp. 2013–2025.

Mather, N. W., and Sutton, G. W., 1962, "*Engineering Aspects of Engineering Magnetohyrdodynamics*", Gordon and Breach Science Publishers, New York.

Coombe, R. A.. "*Magnetohydrodynamic Generation of Electric Power*", Reinhold Publishing Corporation, NY, 1963.

Sutton, G. and Sherman, A.. "*Engineering Magnetohydrodynamics*", McGraw Hill, New York, 1965.

Aydin, M. and Yavuz, H., Application of finite time thermodynamics to MHD power cycles, Energy, Vol.18 (1993) pp.907–911.

Sahin, B., Kodal, A., and Yavuz, H., 1996, “A performance analysis for MHD power cycle operating at maximum power density,” J. Phys. D29 , pp. 1473–1475.

El Haj Assad, M., and Wu, C.. 1999, "*Finite time thermodynamic analysis of a MHD power plant. Recent advances in finite time thermodynamics*", C.Wu, L.Chen, and J., Chen, eds., Nova Science Publishers, pp. 239–248.

El Haj Assad, M., 2000, “Thermodynamic analysis of an irreversible MHD power plant,” Int. J. Energy Res., 24 , pp. 865–875.

Chen, L., Gong, J., Sun, F., and Wu, C., 2002, “Heat transfer effect on the performance of MHD power plant,” Energy Convers. Manage., 43 , pp. 2085–2095.

Tiwari, V., 2002, “Finite time thermodynamic analysis of gas turbine power cycles,” M. Tech. thesis, Centre for Energy Studies, IIT Delhi, India.