0
Alternative Energy Sources

Comparison of Two Different Vertical Column Photobioreactors for the Cultivation of Nannochloropsis sp.

[+] Author and Article Information
Oscar Pupo Roncallo

e-mail: opupo@uninorte.edu.co

Samira García Freites

e-mail: sfreites@uninorte.edu.co
Mechanical Engineering Department,
Universidad del Norte,
Km 5 vía Puerto Colombia,
Barranquilla, 080001, Colombia

Edgardo Paternina Castillo

Mechanical Engineering Department,
Universidad Pontificia Bolivariana,
Km 8 vía a Cereté,
Montería, 230007, Colombia
e-mail: edgardo.paternina@upbmonteria.edu.co

Antonio Bula Silvera

Mechanical Engineering Department,
Universidad del Norte,
Km 5 vía Puerto Colombia,
Barranquilla, 080001, Colombia
e-mail: abula@uninorte.edu.co

Adriana Cortina

CENIACUA Research Institute,
Cartagena corregimiento de Punta Canoa,
Cartagena, 130001, Colombia
e-mail: acortina@ceniacua.org

Francisco Acuña

Mechanical Engineering Department,
Universidad del Norte,
Km 5 vía Puerto Colombia,
Barranquilla, 080001, Colombia
e-mail: facuna@uninorte.edu.co

Contributed by the Advanced Energy Systems Division of ASME for publication in the Journal of Energy Resources Technology. Manuscript received April 22, 2012; final manuscript received September 16, 2012; published online November 6, 2012. Assoc. Editor: Sarma V. Pisupati.

J. Energy Resour. Technol 135(1), 011201 (Nov 06, 2012) (7 pages) Paper No: JERT-12-1082; doi: 10.1115/1.4007689 History: Received April 22, 2012; Revised September 16, 2012

A photobioreactor (PBR) for microalgae culture is a highly efficient system for biomass production. In the present study, the performance of an airlift (ALR) (with a centric-tube column) and a bubble column (BC) photobioreactors were compared considering Nannochloropsis sp. growth. The experiments were carried out keeping average light intensity, temperature, volume culture, and CO2 supply constant, while cell concentration and pH level were measured and examined. Furthermore, a computational fluid dynamics (CFD) simulation in cfx, ansys 11.0, was developed using a multiphase flow model with an Eulerian approach to evaluate the hydrodynamic behavior of both systems. The results showed that a higher cell concentration (375 × 105 cell/ml) was obtained in the airlift PBR yielding a better growth rate than the bubble column PBR. In terms of hydrodynamic performance, the existence of the centric-tube in the airlift system shows a well-defined flow pattern, better light distribution cycle, and more effective mixing. These hydrodynamic characteristic of the airlift PBR may allow a better yield for the microalgae biomass production.

FIGURES IN THIS ARTICLE
<>
Copyright © 2013 by ASME
Your Session has timed out. Please sign back in to continue.

References

Mata, T. M., Martins, A. A., and Caetano, N. S., 2010, “Microalgae for Biodiesel Production and Other Applications: A Review,” Renewable Sustainable Energy Rev., 14(1), pp. 217–232. [CrossRef]
Cheng, K. C., and Ogden, K. L., 2011, “Algal Biofuels: The Research,” Chem. Eng. Prog., 107, pp. 42–47.
Bilanovic, D., Andargatchew, A., Kroeger, T., and Shelef, G., 2009, “Freshwater and Marine Microalgae Sequestering of CO2 at Different C and N Concentrations—Response Surface Methodology Analysis,” Energy Convers. Manage., 50, pp. 262–267. [CrossRef]
Cohen, S. M., Rochelle, G. T., and Webber, M. E., 2010, “Turning CO2 Capture On and Off in Response to Electric Grid Demand: A Baseline Analysis of Emissions and Economics,” ASME J. Energy Resour. Technol., 132(2), p. 021003. [CrossRef]
De Morais, M. G., and Costa, J. A. V., 2007, “Carbon Dioxide Fixation by Chlorella Kessleri, C. Vulgaris, Scenedesmus Obliquus and Spirulina Sp. Cultivated in Flasks and Vertical Tubular Photobioreactors,” Biotechnol. Lett., 29, pp. 1349–1352. [CrossRef] [PubMed]
De Morais, M. G., and Costa, J. A. V., 2007, “Biofixation of Carbon Dioxide by Spirulina Sp. and Scenedesmus Obliquus Cultivated in a Three-Stage Serial Tubular Photobioreactor,” J. Biotechnol., 129(3), pp. 439–445. [CrossRef] [PubMed]
Huntley, M. E., and Redalje, D. G., 2006, “CO2 Mitigation and Renewable Oil From Photosynthetic Microbes: A New Appraisal,” Mitigation Adapt. Strategies Global Change, 12, pp. 573–608. [CrossRef]
Ma, J., and Hemmers, O., 2011, “Technoeconomic Analysis of Microalgae Cofiring Process for Fossil Fuel-Fired Power Plants,” ASME J. Energy Resour. Technol., 133(1), p. 011801. [CrossRef]
Maeda, K., Owada, M., Kimura, N., Omata, K., and Karube, I., 1995, “CO2 Fixation From the Flue Gas on Coal-Fired Thermal Power Plant by Microalgae,” Energy Convers. Manage., 36, pp. 717–720. [CrossRef]
Michiki, H., 1995, “Biological CO2 Fixation and Utilization Project,” Energy Convers. Manage., 36, pp. 701–705. [CrossRef]
Sawayama, S., Inoue, S., Dote, Y., and Yokoyama, S.-Y., 1995, “CO2 Fixation and Oil Production Through Microalga,” Energy Convers. Manage., 36(6–9), pp. 729–731. [CrossRef]
Wang, B., Li, Y., Wu, N., and Lan, C., 2008, “CO2 Bio-Mitigation Using Microalgae,” Appl. Microbiol. Biotechnol., 79(5), pp. 707–718. [CrossRef] [PubMed]
Chisti, Y., 2007, “Biodiesel From Microalgae,” Biotechnol. Adv., 25(3), pp. 294–306. [CrossRef] [PubMed]
Hossain, A. B. M., Salleh, A., Boyce, A. N., Chowdhury, P., and Naqiuddin, M., 2008, “Biodiesel Fuel Production From Algae as Renewable Energy,” Am. J. Biochem. Biotechnol., 4, pp. 250–254. [CrossRef]
Meng, X., Yang, J., Xu, X., Zhang, L., Nie, Q., and Xian, M., 2009, “Biodiesel Production From Oleaginous Microorganisms,” Renewable Energy, 34(1), pp. 1–5. [CrossRef]
Canakci, M., and Sanli, H., 2008, “Biodiesel Production From Various Feedstocks and Their Effects on the Fuel Properties,” J. Ind. Microbiol. Biotechnol., 35, pp. 431–441. [CrossRef] [PubMed]
Vasudevan, P., and Briggs, M., 2008, “Biodiesel Production—Current State of the Art and Challenges,” J. Ind. Microbiol. Biotechnol., 35(5), pp. 421–430. [CrossRef] [PubMed]
Gouveia, L., and Oliveira, A. C., 2009, “Microalgae as a Raw Material for Biofuels Production,” J. Ind. Microbiol. Biotechnol., 36, pp. 269–274. [CrossRef] [PubMed]
Rodolfi, L., Chini Zittelli, G., Bassi, N., Padovani, G., Biondi, N., Bonini, G., and Tredici, M. R., 2009, “Microalgae for Oil: Strain Selection, Induction of Lipid Synthesis and Outdoor Mass Cultivation in a Low-Cost Photobioreactor,” Biotechnol. Bioeng., 102, pp. 100–112. [CrossRef] [PubMed]
Olguín, E. J., Galicia, S., Mercado, G., and Pérez, T., 2003, “Annual Productivity of Spirulina (Arthrospira) and Nutrient Removal in a Pig Wastewater Recycling Process Under Tropical Conditions,” J. Appl. Phycol., 15, pp. 249–257. [CrossRef]
Muñoz, R., Köllner, C., and Guieysse, B., 2009, “Biofilm Photobioreactors for the Treatment of Industrial Wastewaters,” J. Hazard. Mater., 161(1), pp. 29–34. [CrossRef] [PubMed]
Olaizola, M., 2003, “Commercial Development of Microalgal Biotechnology: From the Test Tube to the Marketplace,” Biomol. Eng., 20(4–6), pp. 459–466. [CrossRef] [PubMed]
Laliberté, G., Lessard, P., De La Noue, J., and Sylvestre, S., 1997, “Effect of Phosphorus Addition on Nutrient Removal From Wastewater With the Cyanobacterium Phormidium Bohneri,” Bioresour. Technol., 59, pp. 227–233. [CrossRef]
Lundquist, T. J., 2008, “Production of Algae in Conjunction With Wastewater Treatment,” Renewable Energy Laboratory and Air Force Office of Scientific Research Workshop: Algal Oil for Jet Fuel Production, Arlington, VA, Feb. 19–21.
Hodaifa, G., Martínez, M. A. E., and Sánchez, S., 2008, “Use of Industrial Wastewater From Olive-Oil Extraction for Biomass Production of Scenedesmus Obliquus,” Bioresour. Technol., 99, pp. 1111–1117. [CrossRef] [PubMed]
Lee, Y.-K., 1997, “Commercial Production of Microalgae in the Asia-Pacific Rim,” J. Appl. Phycol., 9(5), pp. 403–411. [CrossRef]
Borowitzka, M. A., 1999, “Commercial Production of Microalgae: Ponds, Tanks, Tubes and Fermenters,” J. Biotechnol., 70(1–3), pp. 313–321. [CrossRef]
Pulz, O., and Gross, W., 2004, “Valuable Products From Biotechnology of Microalgae,” Appl. Microbiol. Biotechnol., 65(6), pp. 635–648. [CrossRef] [PubMed]
De Pauw, N., Morales, J., and Persoone, G., 1984, “Mass Culture of Microalgae in Aquaculture Systems: Progress and Constraints,” Hydrobiologia, 116/117, pp. 121–134. [CrossRef]
Borowitzka, M. A., 1997, “Microalgae for Aquaculture: Opportunities and Constraints,” J. Appl. Phycol., 9, pp. 393–401. [CrossRef]
Richmond, A., 2000, “Microalgal Biotechnology at the Turn of the Millennium: A Personal View,” J. Appl. Phycol., 12(3), pp. 441–451. [CrossRef]
Brown, M. R., Jeffrey, S. W., Volkman, J. K., and Dunstan, G. A., 1997, “Nutritional Properties of Microalgae for Mariculture,” Aquaculture, 151, pp. 315–331. [CrossRef]
Oncel, S., and Sukan, F. V., 2008, “Comparison of Two Different Pneumatically Mixed Column Photobioreactors for the Cultivation of Artrospira Platensis (Spirulina Platensis),” Bioresour. Technol., 99(11), pp. 4755 –4760. [CrossRef]
Richmond, A., 2004, Handbook of Microalgal Culture: Biotechnology and Applied Phycology, Blackwell Science, Ames, IA.
Le, E., Park, C., and Hiibel, S., 2012, “Investigation of the Effect of Growth From Low to High Biomass Concentration Inside a Photobioreactor on Hydrodynamic Properties of Scenedesmus Obliquus,” ASME J. Energy Resour. Technol., 134(1), p. 011801. [CrossRef]
Ogbonna, J. C., and Tanaka, H., 2000, “Light Requirement and Photosynthetic Cell Cultivation—Development of Processes for Efficient Light Utilization in Photobioreactors,” J. Appl. Phycol., 12(3), pp. 207–218. [CrossRef]
Pupo, O., García, S., Valencia, G., and Bula, A., 2011, “Conceptual Design of Photobioreactor for Algae Cultivation,” ASME International Mechanical Congress and Exposition (IMECE2011), Denver, CO, Nov. 11–17, Vol. 4, Paper No. IMECE2011-64484, pp. 197–202. [CrossRef]
Chisti, Y., 1989, Airlift Bioreactor, Elservier Applied Science, London.
Posten, C., 2009, “Design Principles of Photo-Bioreactors for Cultivation of Microalgae,” Eng. Life Sci., 9(3), pp. 165–177. [CrossRef]
Travieso, L., Hall, D. O., Rao, K. K., BeníTez, F., Sánchez, E., and Borja, R., 2001, “A Helical Tubular Photobioreactor Producing Spirulina in a Semicontinuous Mode,” Int. Biodeter. Biodegrad., 47(3), pp. 151–155. [CrossRef]
Ugwu, C. U., Aoyagi, H., and Uchiyama, H., 2008, “Photobioreactors for Mass Cultivation of Algae,” Bioresour. Technol., 99(10), pp. 4021–4028. [CrossRef] [PubMed]
Pulz, O., 2001, “Photobioreactors: Production Systems for Phototrophic Microorganisms,” Appl. Microbiol. Biotechnol., 57, pp. 287–293. [CrossRef] [PubMed]
Sánchez Mirón, A., García Camacho, F., Contreras Gómez, A., Molina Grima, E., and Chisti, Y., 2000, “Bubble-Column and Airlift Photobioreactors for Algal Culture,” AIChE J., 46(9), pp. 1872–1887. [CrossRef]
Sánchez Mirón, A., Cerón García, M.-C., García Camacho, F., Molina Grima, E., and Chisti, Y., 2002, “Growth and Biochemical Characterization of Microalgal Biomass Produced in Bubble Column and Airlift Photobioreactors: Studies in Fed-Batch Culture,” Enzyme Microb. Technol., 31(7), pp. 1015–1023. [CrossRef]
Degen, J., Uebele, A., Retze, A., Schmid-Staiger, U., and Trösch, W., 2001, “A Novel Airlift Photobioreactor With Baffles for Improved Light Utilization Through the Flashing Light Effect,” J. Biotechnol., 92(2), pp. 89–94. [CrossRef] [PubMed]
Barbosa, M. J., Hoogakker, J., and Wijffels, R. H., 2003, “Optimisation of Cultivation Parameters in Photobioreactors for Microalgae Cultivation Using the a-Stat Technique,” Biomol. Eng., 20(4–6), pp. 115–123. [CrossRef] [PubMed]
Molina Grima, E., Belarbi, E. H., Acién Fernández, F. G., Robles Medina, A., and Chisti, Y., 2003, “Recovery of Microalgal Biomass and Metabolites: Process Options and Economics,” Biotechnol. Adv., 20(7–8), pp. 491–515. [CrossRef] [PubMed]
Cheng-Wu, Z., Zmora, O., Kopel, R., and Richmond, A., 2001, “An Industrial-Size Flat Plate Glass Reactor for Mass Production of Nannochloropsis sp. (Eustigmatophyceae),” Aquaculture, 195(1), pp. 35–49. [CrossRef]
Zittelli, G. C., Rodolfi, L., and Tredici, M. R., 2003, “Mass Cultivation of Nannochloropsis sp. in Annular Reactors,” J. Appl. Phycol., 15(2), pp. 107–114. [CrossRef]
Garcia, R., 2003, “Manual de metodología y alternativas para el cultivo de algas unicelulares y su uso en la acuacultura,” SENA, Cartagena, Technical Report No. 30012003.
Andersen, R., 2005, Algal Culturing Techniques, 1st ed., Elservier/Academic Press, Burlington, MA.
Bitog, J. P., Lee, I. B., Lee, C. G., Kim, K. S., Hwang, H. S., Hong, S. W., Seo, I. H., Kwon, K. S., and Mostafa, E., 2011, “Application of Computational Fluid Dynamics for Modeling and Designing Photobioreactors for Microalgae Production: A Review,” Comput. Electron. Agric., 76(2), pp. 131–147. [CrossRef]
Caridad, J., and Kenyery, F., 2004, “CFD Analysis of Electric Submersible Pumps (ESP) Handling Two-Phase Mixtures,” ASME J. Energy Resour. Technol., 126(2), pp. 99–104. [CrossRef]
Zaghloul, J., Adewumi, M., and Ityokumbul, M. T., 2008, “Hydrodynamic Modeling of Three-Phase Flow in Production and Gathering Pipelines,” ASME J. Energy Resour. Technol., 130(4), p. 043004. [CrossRef]
García, S., Pupo, O., Paternina, E., Bula, A., and Acuña, F., 2012, “CFD Simulation of Multiphase Flow in an Airlift Column Photobioreactor for the Cultivation of Microalgae,” ESFuel Cell, San Diego, CA, July 23–26.
Luo, H.-P., and Al-Dahhan, M. H., 2011, “Verification and Validation of CFD Simulations for Local Flow Dynamics in a Draft Tube Airlift Bioreactor,” Chem. Eng. Sci., 66(5), pp. 907–923. [CrossRef]
Anandarajah, K., Mahendraperumal, G., Sommerfeld, M., and Hu, Q., 2012, “Characterization of Microalga Nannochloropsis sp. Mutants for Improved Production of Biofuels,” Appl. Energy, 96, pp. 371–377. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Diagram of the bubble column and airlift PBR

Grahic Jump Location
Fig. 2

CAD models for bubble column and airlift PBRs

Grahic Jump Location
Fig. 3

Volume mesh for bubble column and airlift PBR

Grahic Jump Location
Fig. 4

Gas holdup contours for bubble column and airlift PBRs

Grahic Jump Location
Fig. 5

Air velocity vectors for bubble column and airlift PBRs

Grahic Jump Location
Fig. 6

Water velocity vectors for bubble column and airlift PBRs

Grahic Jump Location
Fig. 7

Water velocity contours for bubble column and airlift PBRs

Grahic Jump Location
Fig. 8

Airlift photobioreactor with Nannochloropsis sp. culture

Grahic Jump Location
Fig. 9

Cell concentration variation for the experiments

Grahic Jump Location
Fig. 10

pH variation during the experiments

Grahic Jump Location
Fig. 11

Cell concentration and pH variation for airlift PBR

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In