0
Research Papers: Air Emissions From Fossil Fuel Combustion

Detailed Kinetic Modeling of Soot-Particle and Key-Precursor Formation in Laminar Premixed and Counterflow Diffusion Flames of Fossil Fuel Surrogates

[+] Author and Article Information
Ali Salavati-Zadeh

Ph.D. Candidate
e-mail: alisalavati@ut.ac.ir

Vahid Esfahanian

Professor
e-mail: evahid@ut.ac.ir

Asghar Afshari

Assistant Professor
e-mail: afsharia@ut.ac.ir
School of Mechanical Engineering,
College of Engineering,
University of Tehran,
Tehran, Iran

1Corresponding author.

Contributed by the Internal Combustion Engine Division of ASME for publication in the JOURNAL OF ENERGY RESOURCES TECHNOLOGY. Manuscript received April 16, 2012; final manuscript received September 1, 2012; published online May 24, 2013. Assoc. Editor: Professor Kevin M. Lyons.

J. Energy Resour. Technol 135(3), 031101 (May 24, 2013) (13 pages) Paper No: JERT-12-1075; doi: 10.1115/1.4023302 History: Received April 16, 2012; Revised September 01, 2012

This study reports a chemical kinetics soot model for combustion of engine-relevant fuels. The scheme accounts for both low- and high-temperature oxidation, considering their crucial role in engine combustion process. The mechanism is validated against several ignition delay times and laminar burning velocities data sets for single and mixtures of hydrocarbons. To assess the mechanism ability to predict soot precursors, formation of aromatic and aliphatic species with critical effects on soot formation is investigated for several laminar premixed and diffusion flames. The model includes soot particle inception, surface growth, coagulation, and aggregation based on the method of moments. The performance of the model is evaluated by predicting the amount of produced soot during heavy alkanes and aromatic species mixtures pyrolysis. The results are encouraging, proving this methodology to be a suitable tool to simulate the all-round combustion features of engine fuel surrogates by a single reaction model.

Copyright © 2013 by ASME
Your Session has timed out. Please sign back in to continue.

References

Lippmann, M., Ito, K., Nadas, A., and Burnett, R. T., 2000, “Association of Particulate Matter Components With Daily Mortality and Morbidity in Urban Populations,” Research Report No. 95, Health Effects Institute, Cambridge, MA.
Wichmann, H. E., Spix, C., Tuch, T., Woelke, G., Peters, A., Heinrich, J., Kreyling, W. G., and Heyder, J., 2000, “Daily Mortality and Fine and Ultrafine Particles in Erfurt, Germany—Part I, Role of Particle Number and Particle Mass,” Research Report No. 98, Health Effects Institute, Cambridge, MA.
Roy, M. M., 2007, “Charcoal-Adsorption, Water-Washing, and Air-Dilution Systems to Reduce Diesel Emissions With Special Emphasis on Odor Reduction,” ASME J. Energy Resour. Technol., 129, pp. 338–347. [CrossRef]
Roy, M. M., 2008, “Normal Heptane-Diesel Combustion and Odorous Emissions in Direct Injection Diesel Engines,” ASME J. Energy Resour. Technol., 130, p. 011101. [CrossRef]
Roy, M. M., 2009, “Effect of Fuel Injection Timing and Injection Pressure on Combustion and Odorous Emissions in DI Diesel Engines,” ASME J. Energy Resour. Technol., 131, p. 032201. [CrossRef]
Yoon, S. H., Park, S. H., Suh, S. K., and Lee, C. S., 2009, “Effect of Biodiesel-Ethanol Blended Fuel Spray Characteristics on the Reduction of Exhaust Emissions in a Common-Rail Diesel Engine,” ASME J. Energy Resour. Technol., 131, p. 012202. [CrossRef]
Gollahalli, S. R., and Puri, R., 1992, “Flame Structure and Pollutant Emission Characteristics of a Burning Kerosene Spray With Injection of Diluents,” ASME J. Energy Resour. Technol., 114, pp. 209–214. [CrossRef]
Love, N. D., Parthasarathy, R. N., and Gollahalli, S. R., 2009, “Rapid Characterization of Radiation and Pollutant Emissions of Biodiesel and Hydrocarbon Liquid Fuels,” ASME J. Energy Resour. Technol., 131, p. 012202. [CrossRef]
Haynes, B. S., and Wagner, H. G., 1981, “Soot Formation,” Prog. Energy Combust. Sci., 7, pp. 229–273. [CrossRef]
Appel, J., Bockhorn, H., and Frenklach, M., 2000, “Kinetic Modeling of Soot Formation With Detailed Chemistry and Physics: Laminar Premixed Flames of C2 Hydrocarbons,” Combust. Flame, 121, pp. 122–136. [CrossRef]
Schuetz, C. A., and Frenklach, M., 2002, “Nucleation of Soot: Molecular Dynamics Simulations of Pyrene Dimerization,” Proc. Combust. Inst., 29, pp. 2307–2314. [CrossRef]
Frenklach, M., and Wang, H., 1991, “Detailed Modeling of Soot Particle Nucleation and Growth,” Proc. Combust. Inst., 23, pp. 1559–1566. [CrossRef]
Frenklach, M., 2002, “Reaction Mechanism of Soot Formation in Flames,” Phys. Chem. Chem. Phys., 4, pp. 2028–2037. [CrossRef]
Kazakov, A., and Frenklach, M., 1998, “Dynamic Modeling of Soot Particle Coagulation and Aggregation: Implementation With the Method of Moments and Application to High-Pressure Laminar Premixed Flames,” Combust. Flame, 114, pp. 484–501. [CrossRef]
Frenklach, M., 2002, “Method of Moments With Interpolative Closure,” Chem. Eng. Sci., 57, pp. 2229–2239. [CrossRef]
Patterson, R., and Kraft, M., 2007, “Models for the Aggregate Structure of Soot Particles,” Combust. Flame, 151, pp. 160–172. [CrossRef]
Mueller, M., Blanquart, G., and Pitsch, H., 2009, “A Joint Volume-Surface Model of Soot Aggregation With the Method of Moments,” Proc. Combust. Inst., 32, pp. 785–792. [CrossRef]
Blanquart, G., Pepiot-Desjardins, P., and Pitsch, H., 2009, “Chemical Mechanism for High Temperature Combustion of Engine Relevant Fuels With Emphasis on Soot Precursors,” Combust. Flame, 156, pp. 588–607. [CrossRef]
Chen, W., Shuai, S., and Wang, J., 2009, “A Soot Formation Embedded Reduced Reaction Mechanism for Diesel Surrogate Fuel,” Fuel, 88, pp. 1927–1936. [CrossRef]
Westbrook, C. K., and Dryer, F. L., 1984. “Chemical Kinetic Modeling of Hydrocarbon Combustion,” Prog. Energy. Combust. Sci., 10, pp. 1–57. [CrossRef]
Frenklach, M., Clary, D. W., Yuan, T. C., Gardiner, W., and Stein, S. E., 1986, “Mechanism of Soot Formation in Acetylene-Oxygen Mixtures,” Combust. Sci. Technol., 50, pp. 79–115. [CrossRef]
Frenklach, M., and Warnatz, J., 1987, “Detailed Modeling of PAH Profiles in a Sooting Low-Pressure Acetylene Flame,” Combust. Sci. Technol., 51, pp. 265–283. [CrossRef]
Babushok, V. I., and Tsang, W., 2004, “Kinetic Modeling of Heptane Combustion and PAH Formation,” J. Propul. Power, 20, pp. 403–414. [CrossRef]
Farrell, J. T., Cernanski, N. P., Dryer, F. L., Friend, D. G., Hergart, C. A., Law, C. K., Mueller, R. M. M. C. J., Patel, A. K., and Pitsch, H., 2007, “Development of an Experimental Database and Kinetic Models for Surrogate Diesel Fuels,” SAE Paper No. 2007-01-0201.
Pang, K. M., Ng, H. K., and Gan, S., 2011, “Development of an Integrated Reduced Fuel Oxidation and Soot Precursor Formation Mechanism for CFD Simulations of Diesel Combustion,” Fuel, 90, pp. 2902–2914. [CrossRef]
Jerzembeck, S., Peters, N., Pepiot-Desjardins, P., and Pitsch, H., 2009, “Laminar Burning Velocities at High Pressure for Primary Reference Fuels and Gasoline: Experimental and Numerical Investigation,” Combust. Flame, 156, pp. 292–301. [CrossRef]
Gauthier, B. M., Davidson, D. F., and Hanson, R. K., 2004, “Shock Tube Determination of Ignition Delay Times in Full-Blend and Surrogate Fuel Mixtures,” Combust. Flame, 139, pp. 300–311. [CrossRef]
Cancino, L. R., Fikri, M., Oliveira, A. A. M., and Schulz, C., 2011, “Ignition Delay Times of Ethanol-Containing Multi-Component Gasoline Surrogates: Shock-Tube Experiments and Detailed Modeling,” Fuel, 90, pp. 1238–1244. [CrossRef]
Hartmann, M., Gushterova, I., Fikri, M., Schulz, C., Schiessl, R., and Mass, U., 2011, “Auto-Ignition of Toluene-Doped n-Heptane and Iso-Octane/Air Mixtures: High-Pressure Shock-Tube Experiments and Kinetics Modeling,” Combust. Flame, 158, pp. 172–178. [CrossRef]
Wang, H., and Frenklach, M., 1997, “A Detailed Kinetic Modeling Study of Aromatics Formation in Laminar Premixed Acetylene and Ethylene Flames,” Combust. Flame, 110, pp. 173–221. [CrossRef]
Eiteneer, B., and Frenklach, M., 2008, “Experimental and Modeling Study of Shock-Tube Oxidation of Acetylene,” Int. J. Chem. Kinet., 35, pp. 391–414. [CrossRef]
Qin, Z., Lissianski, V., Yang, H., Gardiner, W. C., Davis, S. G., and Wang, H., 2000, “Combustion Chemistry of Propane: A Case Study of Detailed Reaction Mechanism Optimization,” Proc. Combust. Inst., 28, pp. 1663–1669. [CrossRef]
Laskin, A., Wang, H., and Law, C. K., 2000, “Detailed Kinetic Modeling of 1,3-Butadiene Oxidation at High Temperatures,” Int. J. Chem. Kinet., 39, pp. 589–614. [CrossRef]
Djurisic, Z. M., 1999, “Detailed Kinetic Modeling of Benzene and Toluene Oxidation at High Temperatures,” M.S. thesis, University of Delaware, Newark, DE.
Costa, I. D., Fournet, R., Billaud, F., and Battin-leclerc, F., 2003, “Experimental and Modeling Study of the Oxidation of Benzene,” Int. J. Chem. Kinet., 35, pp. 503–524. [CrossRef]
Oehlschlager, M. A., Davidson, D. F., and Hanson, R. K., 2006, “Investigation of the Reaction of Toluene With Molecular Oxygen in Shock-Heated Gases,” Combust. Flame, 147, pp. 195–208. [CrossRef]
Curran, H. J., Gaffuri, P., Pitz, W. J., and Westbrook, C. K., 1998, “A Comprehensive Modeling Study of n-Heptane Combustion,” Combust. Flame, 114, pp. 149–177. [CrossRef]
Curran, H. J., Gaffuri, P., Pitz, W. J., and Westbrook, C. K., 2002, “A Comprehensive Modeling Study of Iso-Octane Oxidation,” Combust. Flame, 129, pp. 253–280. [CrossRef]
Westbrook, C. K., Pitz, W. J., Herbinet, O., Curran, H. J., and Silke, E. J., 2009, “A Comprehensive Detailed Chemical Kinetic Reaction Mechanism for Combustion of n-Alkane Hydrocarbons From n-Octane to n-Hexadecane,” Combust. Flame, 156, pp. 181–199. [CrossRef]
Kriokidis, X., Moriarty, N. M., Lester, W. A., and Frenklach, M., 2001, “A Quantum Monte Carlo Study of Energy Differences in C4H3 and C4H5 Isomers,” Int. J. Chem. Kinet., 33, pp. 808–820. [CrossRef]
Bikas, G., and Peters, N., 2001, “Kinetic Modeling of n-Decane Combustion and Autoignition,” Combust. Flame, 126, pp. 1456–1475. [CrossRef]
Marinov, N. M., Pitz, W. J., Westbrook, C. K., Vincitore, A. M., Costaldi, M. J., Senkan, S. M., and Melius, C. F., 1998, “Aromatic and Polycyclic Aromatic Hydrocarbon Formation in a Laminar Premixed n-Butane Flame,” Combust. Flame, 114, pp. 192–213. [CrossRef]
Miller, J. A., and Klippenstein, S. J., 2004, “The H+C2H2(+M)⇌C2H3(+M) and H+C2H4(+M)⇌C2H5(+M) Reactions: Electronic Structure, Variational Transition-State Theory, and Solutions to a Two-Dimensional Master Equation,” Phys. Chem. Chem. Phys., 6, pp. 1192–1202. [CrossRef]
Oehlschlager, M. A., Davidson, D. F., and Hanson, R. K., 2005, “High Temperature Ethane and Propane Decomposition,” Proc. Combust. Inst., 30, pp. 1119–1127. [CrossRef]
Bozzelli, J. W., and Dean, A. M., 1997, “Hydrocarbon Radical Reactions With Oxygen: Comparison of Allyl, Formyl, and Vinyl to Ethyl,” J. Phys. Chem., 93, pp. 4427–4491.
Baulch, D. L., Bowman, C. T., Cobos, C. J., Cox, R. A., Just, T., Kerr, J. A., Pilling, M. J., Stocker, D., Troe, J., Tsang, W., Walker, R. W., and Warnatz, J., 2005, “Evaluated Kinetic Data for Combustion Modeling: Supplement II,” J. Chem. Phys. Ref. Data, 34, pp. 1–641. [CrossRef]
Scherer, S., Just, T., and Frank, P., 2000, “High-Temeprature Investigations on Pyrolytic Reactions of Propargyl Radicals,” Proc. Combust. Inst., 28, pp. 1511–1518. [CrossRef]
Rossi, M., 2008, “Thermochemical Properties From Ab Initio Calculations,” Int. J. Chem. Kinet., 40, pp. 395–415. [CrossRef]
Narayanaswamy, K., Blanquart, G., and Pitsch, H., 2010, “A Consistent Chemical Mechanism for Oxidation of Substituted Aromatic Species,” Combust. Flame, 157, pp. 1879–1898. [CrossRef]
Kislov, V. V., Islamova, N. I., Kolker, A. M., Lin, S. H., and Mebel, A. M., 2005, “Hydrogen Abstraction Acetylene Addition and Diels-Alder Mechanisms of PAH Formation: A Detailed Study Using First Principles Calculations,” J. Chem. Theory Comput., 1, pp. 908–924. [CrossRef]
Pepiot-Desjardins, P., and Pitsch, H., 2008, “An Efficient Error-Propagation-Based Reduction Method for Large Chemical Kinetic Mechanisms,” Combust. Flame, 154, pp. 67–81. [CrossRef]
Lu, T., and Law, C., 2006, “Linear Time Reduction of Large Kinetic Mechanisms With Directed Relation Graph: n-Heptane and Iso-Octane,” Combust. Flame, 144, pp. 24–36. [CrossRef]
Lu, T., and Law, C., 2006, “On the Applicability of Directed Relation Graphs to the Reduction of Reaction Mechanisms,” Combust. Flame, 146, pp. 472–483. [CrossRef]
Westbrook, C. K., Pitz, W. J., Curran, H. J., Boercker, J. E., and Kunrath, E., 2001, “Chemical Kinetic Modeling Study of Shock Tube Ignition of Heptane Isomers,” Int. J. Chem. Kinet., 33, pp. 868–877. [CrossRef]
Tsang, W., 2003, “Progress in the Development of a Kinetic Data Base for Heptane Combustion,” 41st AIAA Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics. Paper No. 2003-0063.
Kee, R. J., Rupley, F. M., and Miller, J. A., 1989, “Chemkin–II: A Fortran Chemical Kinetics Package for Analysis of Gas-Phase Chemical Kinetics,” Report No. SAND89–8009B, Sandia Laboratories, Albuquerque, NM.
Kee, R. J., Grcar, J. F., Smooke, M. D., and Miller, J. A., 1985, “PREMIX: A Fortran Program for Modeling Steady, Laminar, One-Dimensional Premixed Flame,” Report No. SAND85–8240, Sandia Laboratories, Albuquerque, NM.
Lutz, A. E., Kee, R. J., Grcar, J. F., and Rupley, F. M., 1997, “OPPDIF: A Fortran Program for Computing Opposed-Flow Diffusion Flames,” Report No. SAND96–8243, Sandia Laboratories, Albuquerque, NM.
Seery, D. J., and Bowman, C. T., 1970, “An Experimental and Analytical Study of Methane Oxidation Behind Shock Waves,” Combust. Flame, 14, pp. 37–47. [CrossRef]
Bosschaart, K. J., and DeGoey, L. P. H., 2004, “The Laminar Burning Velocity of Flames Propagating in Mixtures of Hydrocarbons and Air Measured With the Heat Flux Method,” Combust. Flame, 136, pp. 261–269. [CrossRef]
Burcat, A., Snyder, C., and Brabbs, T., 1986, “The Laminar Burning Velocity of Flames Propagating in Mixtures of Hydrocarbons and Air Measured With the Heat Flux Method,” Technical Memorandum No. TM-87312, NASA, Cleveland, OH.
Johnston, R. J., and Farrell, J. T., 2005, “Laminar Burning Velocities and Markstein Lengths of Aromatics at Elevated Temperature and Pressure,” Proc. Combust. Inst., 30, pp. 217–224. [CrossRef]
Davidson, D. F., Gauthier, B. M., and Hanson, R. K., 2005, “Shock Tube Ignition Measurements of Iso-Octane/Air and Toluene/Air at High Pressures,” Proc. Combust. Inst., 30, pp. 1175–1182. [CrossRef]
Dagaut, P., Pengloan, G., and Ristori, A., 2002, “Oxidation, Ignition and Combustion of Toluene: Experimental and Detailed Chemical Kinetic Modeling,” Phys. Chem. Chem. Phys., 4, pp. 1846–1854. [CrossRef]
Ciezki, H. K., and Adomeit, G., 1993, “Shock-Tube Investigation of Self-Ignition of n-Heptane–Air Mixtures Under Engine Relevant Conditions,” Combust. Flame, 93, pp. 421–433. [CrossRef]
Fieweger, K., Blumenthal, R., and Adomeit, G., 1997, “Self-Ignition of S.I. Engine Model Fuels: A Shock Tube Investigation at High Pressure,” Combust. Flame, 109, pp. 599–619. [CrossRef]
Bittner, J. D., and Howard, J. T., 1981, “Composition Profiles and Reaction Mechanisms in a Near-Sooting Premixed Benzene/Oxygen/Argon Flame,” Proc. Combust. Inst., 18, pp. 1105–1116. [CrossRef]
Bakali, A. E., Delfau, J. L., and Vovelle, C., 1998, “Experimental Study of 1 Atmosphere, Rich, Premixed n-Heptane and Iso-Octane Flames,” Combust. Sci. Technol., 140, pp. 69–91. [CrossRef]
Doute, C., Delfau, J. L., Akrich, R., and Vovelle, C., 1995, “Chemical Structure of Atmospheric Pressure Premixed n-Decane and Kerosene Flames,” Combust. Sci. Technol., 106, pp. 327–344. [CrossRef]
Berta, P., Aggarwal, S. K., and Puri, I. K., 2006, “An Experimental and Numerical Investigation of n-Heptane/Air Counterflow Partially Premixed Flames and Emission of NOx and PAH Species,” Combust. Flame, 145, pp. 760–764. [CrossRef]
Kazakov, A., Wang, H., and Frenklach, M., 1995, “Detailed Modeling of Soot Formation in Laminar Premixed Ethylene Flames at a Pressure of 10 Bar,” Combust. Flame, 100, pp. 111–120. [CrossRef]
Frenklach, M., and Harris, S. J., 1987, “Aerosol Dynamics Modeling Using the Method of Moments,” J. Colloid Interface Sci., 118, pp. 252–261. [CrossRef]
Inal, F., Tayfur, G., Melton, T. R., and Senkan, S. M., 2003, “Experimental and Artificial Neural Network Modeling Study on Soot Formation in Premixed Hydrocarbon Flames,” Fuel, 82, pp. 1477–1490. [CrossRef]
Guelder, O. L., 1995, “Effects of Oxygen on Soot Formation in Methane, Propane, and n-Butane Diffusion Flames,” Combust. Flame, 101, pp. 302–310. [CrossRef]
Tsurikov, M., Geigle, K., Krueger, V., Schneider-kuehnle, Y., Strickner, W., Lueckerath, R., Hadef, R., and Aigner, M., 2005, “Laser-Based Investigation of Soot Formation in Laminar Premixed Flames at Atmospheric and Elevated Pressures,” Combust. Sci. Technol., 177, pp. 1835–1862. [CrossRef]
Tree, D., and Svensson, K. I., 2006, “Soot Processes in Compression Ignition Engines,” Prog. Energy Combust. Sci., 33, pp. 272–309. [CrossRef]
Stanmore, B. R., Brilhac, J. F., and Gilot, P., 2001, “The Oxidation of Soot: A Review of Experiments, Mechanisms and Models,” Carbon, 39, pp. 2247–2268. [CrossRef]
Hong, Z., Davidson, D. F., Vasu, S. S., and Hanson, R. K., 2009, “The Effect of Oxygenates on Soot Formation in Rich Heptane Mixtures: A Shock Tube Study,” Fuel, 88, pp. 1901–1906. [CrossRef]
Alexiou, A., and Williams, A., 1995, “Soot Formation in Shock-Tube Pyrolysis of Toluene–n-Heptane and Toluene–Iso-Octane Mixtures,” Fuel, 74, pp. 153–158. [CrossRef]
Mueller, M. E., Blanquart, G., and Pitsch, H., 2009, “Hybrid Method of Moments for Modeling Soot Formation and Growth,” Combust. Flame, 156, pp. 1143–1155. [CrossRef]
See supplemental material at E-JERTD2 for the kinetic scheme.

Figures

Grahic Jump Location
Fig. 1

Ignition delay times for methane. (a) p = 2 bars and φ=0.5, (b) p = 2 bars and φ=1, and (c) p = 2 bars and φ=2.

Grahic Jump Location
Fig. 2

Ignition delay times for benzene. (a) p = 2.3 bars and φ=0.5, (b) p = 2.5 bars and φ=1, and (c) p = 2.5 bars and φ=2.

Grahic Jump Location
Fig. 3

Ignition delay times for toluene. (a) p = 2.3 bars and φ=0.33, (b) φ=1 at three pressures, and (c) p = 1.5 bars and φ=1.1.

Grahic Jump Location
Fig. 4

Ignition delay times for n-heptane. (a) φ=0.5 at two pressures, (b) φ=1 at three pressures, and (c) φ=2 at two pressures.

Grahic Jump Location
Fig. 5

Ignition delay times for iso-octane at two pressures. (a) φ=0.5, (b) φ=1, and (c) φ=2.

Grahic Jump Location
Fig. 6

Ignition delay times for n-decane at three pressures. (a) φ=0.5, (b) φ=1, and (c) φ=1.5.

Grahic Jump Location
Fig. 7

Ignition delay times for binary and ternary mixtures of species. (a) n-heptane/toluene (90/10%vol) at p = 40 bars, (b) iso-octane/toluene (90/10%vol) at p = 40 bars, and (c) iso-octane/toluene/n-heptane (69/2014/17%vol) at φ=1.

Grahic Jump Location
Fig. 8

Laminar premixed flame speeds for (a) methane at p = 1 bar, (b) benzene at p = 3 bars, and (c) toluene at p = 3 bars.

Grahic Jump Location
Fig. 9

Laminar premixed flame speeds for (a) n-heptane, (b) iso-octane, (c) n-decane, and (d) iso-octane/n-heptane (87/13%vol)

Grahic Jump Location
Fig. 10

Spatial variation for benzene premixed flame soot precursors (a) benzene and (b) acetylene. Symbol is the experimental data, dashed line is the previous numerical results, and the solid line the current model.

Grahic Jump Location
Fig. 11

Spatial variation for n-heptane premixed flame soot precursors (a) benzene, (b) acetylene, (c) ethylene, (d) allene, and (e) propyne. Symbol is the experimental data, dashed line is the previous numerical results, and the solid line is the current model.

Grahic Jump Location
Fig. 12

Spatial variation for iso-octane premixed flame soot precursors (a) benzene, (b) acetylene, (c) ethylene, (d) allene, and (e) propyne. Symbol is the experimental data, dashed line is the previous numerical results, and the solid line is the current model.

Grahic Jump Location
Fig.13

Spatial variation for n-decane premixed flame soot precursors (a) benzene, (b) acetylene, (c) ethylene, and (d) allene. Symbol is the experimental data, dashed is line the previous numerical results, and the solid line is the current model.

Grahic Jump Location
Fig. 14

Spatial variation for n-heptane diffusion flame soot precursors: (a) benzene, (b) acetylene, (c) ethylene, (d) allene, and (e) propyne. Symbol is the experimental data, dashed line is the previous numerical results, and the solid line is the current model.

Grahic Jump Location
Fig. 15

Soot volume fraction for (a) methane isobaric premixed flat flames at three equivalence ratios, (b) methane diffusion flames at five initial fuel temperature, and (c) toluene premixed flat flames at three pressures and equivalence ratios

Grahic Jump Location
Fig. 16

Soot yield for (a) n-heptane, (b) n-heptane and toluene blend, and (c) iso-octane and toluene blend

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In