Technology Review

A Comparative Analysis of the Kinetic Experiments in Polyethylene Pyrolysis

[+] Author and Article Information
Pravin Kannan

Department of Chemical Engineering,
The Petroleum Institute,
P.O. Box 2533,
Abu Dhabi
e-mail: pkannan@pi.ac.ae

Salisu Ibrahim, K. Suresh Kumar Reddy, Ahmed Al Shoaibi, C. Srinivasakannan

Department of Chemical Engineering,
The Petroleum Institute,
P.O. Box 2533,
Abu Dhabi

1Corresponding author.

Contributed by the Advanced Energy Systems Division of ASME for publication in the JOURNAL OF ENERGY RESOURCES TECHNOLOGY. Manuscript received September 16, 2012; final manuscript received April 18, 2013; published online November 26, 2013. Assoc. Editor: Richard West.

J. Energy Resour. Technol 136(2), 024001 (Nov 26, 2013) (6 pages) Paper No: JERT-12-1210; doi: 10.1115/1.4025595 History: Received September 16, 2012; Revised April 18, 2013

A review of literature has been conducted to survey the kinetic data of low-density polyethylene (LDPE) pyrolysis. The review reveals large variations in the reported global kinetic parameters. The cause of variation has been identified to be the difference in the experimental techniques, including thermogravimetric analysis (TGA) and non-TGA methods. Even within the nonisothermal TGA data, large variations have been observed at heating rate of 20 K/min, while the variations are insignificant at lower heating rate regimes (2–10 K/min), indicating the influence of heat/mass transfer resistance controlling the kinetics. Detailed analysis revealed that most of the current techniques are unable to capture all the relevant data necessary for estimating the kinetic parameters of the aforementioned process. The outcome of this review work thrusts the need for a better experimental technique to estimate the kinetic parameters of complex reactions, such as polymer pyrolysis.

Copyright © 2014 by ASME
Your Session has timed out. Please sign back in to continue.


“Rising Demand to Fuel Regional Plastics Industry,” Press Release by Expocenter Sharjah, http://www.expo-centre.ae/en/pressread.asp?id=738, 12/2010/2011.
Tukker, A., Simons, L., and Wiegersma, S., 1999, “Chemical Recycling of Plastic Waste (PVC and Other Resins),” Technical Report No. STB-99-55, TNO institute of Strategy, Technology and Policy, Delft, The Netherlands.
Marcilla, A., Beltrán, M. I., and Navarro, R., 2009, “Evolution of Products During the Degradation of Polyethylene in a Batch Reactor,” J. Anal. Appl. Pyrolysis, 86(1), pp. 14–21. [CrossRef]
Serrano, D. P., Aguado, J., Escola, J. M., and Garagorri, E., 2001, “Conversion of Low Density Polyethylene into Petrochemical Feedstocks Using a Continuous Screw Kiln Reactor,” J. Anal. Appl. Pyrolysis, 58–59(0), pp. 789–801. [CrossRef]
Williams, P. T., and Williams, E. A., 1999, “Fluidised Bed Pyrolysis of Low Density Polyethylene to Produce Petrochemical Feedstock,” J. Anal. Appl. Pyrolysis, 51(1–2), pp. 107–126. [CrossRef]
Sodero, S. F., Berruti, F., and Behie, L. A., 1996, “Ultrapyrolytic Cracking of Polyethylene—A High Yield Recycling Method,” Chem. Eng. Sci., 51(11), pp. 2805–2810. [CrossRef]
Kaminsky, W., Schlesselmann, B., and Simon, C., 1995, “Olefins From Polyolefins and Mixed Plastics by Pyrolysis,” J. Anal. Appl. Pyrolysis, 32, pp. 19–27. [CrossRef]
Westerhout, R. W. J., Waanders, J., Kuipers, J. A. M., and van Swaaij, W. P. M., 1997, “Kinetics of the Low-Temperature Pyrolysis of Polyethene, Polypropene, and Polystyrene Modeling, Experimental Determination, and Comparison with Literature Models and Data,” Ind. Eng. Chem. Res., 36(6), pp. 1955–1964. [CrossRef]
Johannes, I., Tamvelius, H., and Tiikma, L., 2004, “A Step-by-Step Model for Pyrolysis Kinetics of Polyethylene in an Autoclave Under Non-Linear Increase of Temperature,” J. Anal. Appl. Pyrolysis, 72(1), pp. 113–119. [CrossRef]
Aboulkas, A., El Harfi, K., and El Bouadili, A., 2010, “Thermal Degradation Behaviors of Polyethylene and Polypropylene. Part I: Pyrolysis Kinetics and Mechanisms,” Energy Convers. Manage., 51(7), pp. 1363–1369. [CrossRef]
Kayacan, I., and Dogan, O. M., 2008, “Pyrolysis of Low and High Density Polyethylene. Part I: Non-Isothermal Pyrolysis Kinetics,” Energy Source, Part A, 30(5), pp. 385–391. [CrossRef]
Ballice, L., 2001, “A Kinetic Approach to the Temperature-Programmed Pyrolysis of Low- and High-Density Polyethylene in a Fixed Bed Reactor: Determination of Kinetic Parameters for the Evolution of n-Paraffins and 1-Olefins,” Fuel, 80(13), pp. 1923–1935. [CrossRef]
Sinfronio, F. S. M., Santos, J. C. O., Pereira, L. G., Souza, A. G., Conceica, M. M., Fernandes, V. J., Jr, and Fonseca, V. M., 2005, “Kinetic of Thermal Degradation of Low-Density and High-Density Polyethylene by Non-Isothermal Thermogravimetry,” J. Therm. Anal. Calorim., 79(2), pp. 393–399. [CrossRef]
Zong, R., Wang, Z., Liu, N., Hu, Y., and Liao, G., 2005, “Thermal Degradation Kinetics of Polyethylene and Silane-Crosslinked Polyethylene,” J. Appl. Polym. Sci., 98(3), pp. 1172–1179. [CrossRef]
Aguado, R., Olazar, M., Gaisan, B., Prieto, R., and Bilbao, J., 2002, “Kinetic Study of Polyolefin Pyrolysis in a Conical Spouted Bed Reactor,” Ind. Eng. Chem. Res., 41(18), pp. 4559–4566. [CrossRef]
Park, W. J., Cheon Oh, S., Lee, P. H., Kim, T. H., and Yoo, O. K., 2000, “A Kinetic Analysis of Thermal Degradation of Polymers Using a Dynamic Method,” Polym. Degrad. Stab., 67(3), pp. 535–540. [CrossRef]
Cai, J., Wang, Y., Zhou, L., and Huang, Q., 2008, “Thermogravimetric Analysis and Kinetics of Coal/Plastic Blends During Co-pyrolysis in Nitrogen Atmosphere,” Fuel Process.Technol., 89(1), pp. 21–27. [CrossRef]
Encinar, J. M., and González, J. F., 2008, “Pyrolysis of Synthetic Polymers and Plastic Wastes-Kinetic Study,” Fuel Process. Technol., 89(7), pp. 678–686. [CrossRef]
Westerhout, R. W. J., Balk, R. H. P., Meijer, R., Kuipers, J. A. M., and van Swaaij, W. P. M., 1997, “Examination and Evaluation of the Use of Screen Heaters for the Measurement of the High Temperature Pyrolysis Kinetics of Polyethene and Polypropene,” Ind. Eng. Chem. Res., 36(8), pp. 3360–3368. [CrossRef]
Reddy, K. S. K., Kannan, P., Al Shoaibi, A., and Srinivasakannan, C., 2012, “Thermal Pyrolysis of Polyethylene in Fluidized Beds: Review of the Influence of Process Parameters on Product Distribution,” ASME J. Energy Resour. Technol., 134(3), p. 034001. [CrossRef]
Gupta, A. K., Ilanchezhian, E., and Keating, E. L., 1996, “Thermal Destruction Behavior of Plastic and Non-Plastic Wastes in a Laboratory-Scale Facility,” ASME J. Energy Resour. Technol., 118(4), pp. 269–276. [CrossRef]
Lin, Y. H., Wei, T. T., Yang, M. H., and Lee, S. L., 2013, “Post Consumer Plastic Waste Over Post-Use Cracking Catalysts for Producing Hydrocarbon Fuels,” ASME J. Energy Resour. Technol., 135(1), p. 011701. [CrossRef]
Brown, M. E., Maciejewski, M., Vyazovkin, S., Nomen, R., Sempere, J., Burnham, A., Opfermann, J., Stery, R., Anderson, H. L., kemmler, A., Keuleers, R., Janssens, J., Desseyn, H. O., Li, C., Tang, T. B., Roduit, B., Malek, J., and Mitsuhashi, T., 2000, “Computational Aspects of Kinetic Analysis: Part A: The ICTAC Kinetics Project-Data, Methods and Results,” Thermochim. Acta, 355(1–2), pp. 125–143. [CrossRef]
Roduit, B., 2000, “Computational Aspects of Kinetic Analysis.: Part E: The ICTAC Kinetics Project—Numerical Techniques and Kinetics of Solid State Processes,” Thermochim. Acta, 355(1–2), pp. 171–180. [CrossRef]
Sergey, V., 2000, “Computational Aspects of Kinetic Analysis.: Part C. The ICTAC Kinetics Project—The Light at the End of the Tunnel?,” Thermochim. Acta, 355(1–2), pp. 155–163. [CrossRef]
Rhett, M. J., and Williams, A., 2011, “Residence Time Influence on the Fast Pyrolysis of Loblolly Pine Biomass,” ASME J. Energy Resour. Technol., 132(4), p. 041801.
Yang, L., Ran, J. Y., and Zhang, L., 2011, “Mechanism and Kinetics of Pyrolysis of Coal With High Ash and Low Fixed Carbon Contents Residence Time Influence on the Fast Pyrolysis of Loblolly Pine Biomass,” ASME J. Energy Resour. Technol., 133(3), p. 031701. [CrossRef]
Bockhorn, H., Hornung, A., and Hornung, U., 1998, “Stepwise Pyrolysis for Raw Material Recovery From Plastic Waste,” J. Anal. Appl. Pyrolysis, 46(1), pp. 1–13. [CrossRef]
Uemichi, Y., and Suzuki, T., 1999, “H-Gallosilicate-Catalyzed Degradation of Polyethylene into Aromatic Hydrocarbons Using Different Types of Reactors,” Chem. Lett., 11, pp. 1137–1138. [CrossRef]
Miskolczi, N., Bartha, L., Deak, G. Y., Jover, B., and Kallo, D., 2004, “Kinetic Model of the Chemical Recycling of Waste Polyethylene into Fuels,” Process Saf. Environ. Prot., 82(3), pp. 223–229. [CrossRef]
Costa, P. A., Pinto, F. J., Ramos, A. M., Gulyurtlu, I. K., Cabrita, I. A., and Bernardo, M. S., 2007, “Kinetic Evaluation of the Pyrolysis of Polyethylene Waste,” Energy Fuels, 21(5), pp. 2489–2498. [CrossRef]
Reynolds, J. G., and Burnham, A. K., 1997, “Pyrolysis Decomposition Kinetics of Cellulose-Based Materials by Constant Heating Rate Micropyrolysis,” Energy Fuels, 11(1), pp. 88–97. [CrossRef]
Lovett, S., Berruti, F., and Behie, L. A., 1997, “Ultrapyrolytic Upgrading of Plastic Wastes and Plastics/Heavy Oil Mixtures to Valuable Light Gas Products,” Ind. Eng. Chem. Res., 36(11), pp. 4436–4444. [CrossRef]
Conesa, J. A., Font, R., and Marcilla, A., 1997, “Comparison Between the Pyrolysis of Two Types of Polyethylenes in a Fluidized Bed Reactor,” Energy Fuels, 11(1), pp. 126–136. [CrossRef]


Grahic Jump Location
Fig. 1

Isothermal conversion plot of LDPE at 490 °C

Grahic Jump Location
Fig. 2

Isothermal conversion plot of LDPE at a nominal temperature of 420 °C

Grahic Jump Location
Fig. 3

Dynamic experimental curve for LDPE decomposition at low heating rate regimes (2–10 K/min)

Grahic Jump Location
Fig. 4

Dynamic experimental curve for LDPE decomposition at a heating rate of 20 K/min

Grahic Jump Location
Fig. 5

Comparison of reaction rate constant from various LDPE pyrolysis studies




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In