Research Papers: Energy Systems Analysis

Large Eddy Simulation for Prediction of Entropy Generation in a Nonpremixed Turbulent Jet Flame

[+] Author and Article Information
Mehdi Safari

Graduate Research Assistant
Department of Mechanical and
Industrial Engineering,
Northeastern University,
Boston, MA 02115
e-mail: safariqariq.m@husky.neu.edu

M. Reza H. Sheikhi

Assistant Professor
Department of Mechanical and
Industrial Engineering,
Northeastern University,
Boston, MA 02115

1Corresponding author.

Contributed by the Advanced Energy Systems Division of ASME for publication in the JOURNAL OF ENERGY RESOURCES TECHNOLOGY. Manuscript received August 6, 2013; final manuscript received November 5, 2013; published online January 15, 2014. Editor: Hameed Metghalchi.

J. Energy Resour. Technol 136(2), 022002 (Jan 15, 2014) (6 pages) Paper No: JERT-13-1230; doi: 10.1115/1.4025974 History: Received August 06, 2013; Revised November 05, 2013

Local entropy generation in a turbulent nonpremixed jet flame (Sandia Flame D) is predicted using large eddy simulation (LES) with inclusion of entropy transport. The filtered form of entropy transport equation contains several unclosed source terms which represent irreversibilities due to viscous dissipation, heat conduction, mass diffusion, and chemical reaction. The subgrid scale (SGS) closure is accounted for by the entropy filtered density function (En-FDF) methodology to include complete statistical information about SGS variation of scalars and entropy. The En-FDF provides closed forms for the chemical reaction effects. The methodology is applied for LES of Sandia Flame D and predictions are validated against experimental data. Entropy statistics are shown to compare favorably with the data. All individual irreversible processes in this flame are predicted and analyzed. It is shown that heat conduction and chemical reaction are the main sources of entropy generation in this flame.

Copyright © 2014 by ASME
Your Session has timed out. Please sign back in to continue.


Bejan, A., 1996, “Entropy Generation Minimization: The New Thermodynamics of Finite-Size Devices and Finite-Time Processes,” J. Appl. Phys., 79(3), pp. 1191–1218. [CrossRef]
Som, S. K., and Datta, A., 2008, “Thermodynamic Irreversibilities and Exergy Balance in Combustion Processes,” Prog. Energy Combust. Sci., 34(3), pp. 351–376. [CrossRef]
Bejan, A., 1982, Entropy Generation through Heat and Fluid Flow, Wiley, New York.
Rezac, P., and Metghalchi, H., 2004, “A Brief Note on the Historical Evolution and Present State of Exergy Analysis,” Int. J. Exergy, 1(4), pp. 426–437. [CrossRef]
Dewulf, J., Van Langenhove, H., Muys, B., Bruers, S., Bakshi, B. R., Grubb, G. F., Paulus, D. M., and Sciubba, E., 2008, “Exergy: Its Potential and Limitations in Environmental Science And Technology,” Environ. Sci. Technol., 42(7), pp. 2221–2232. [CrossRef]
Gouy, G., 1889, “About Available Energy,” J. Phys. II, 8, pp. 501–518.
Stodola, A., 1910, Steam and Gas Turbines, McGraw-Hill, New York.
Jubeh, N. M., 2005, “Exergy Analysis and Second Law Efficiency of a Regenerative Brayton Cycle With Isothermal Heat Addition,” Entropy, 7(3), pp. 172–187. [CrossRef]
Rakopoulos, C. D., and Giakoumis, E. G., 2006, “Second-Law Analyses Applied to Internal Combustion Engines Operation,” Prog. Energy Combust. Sci., 32(1), pp. 2–47. [CrossRef]
Rakopoulos, C. D., and Michos, C. N., 2009, “Generation of Combustion Irreversibilities in a Spark Ignition Engine Under Biogas-Hydrogen Mixtures Fueling,” Int. J. Hydrogen Energy, 34(10), pp. 4422–4437. [CrossRef]
Gyftopoulos, E. P., and Beretta, G. P., 1993, “Entropy Generation Rate in a Chemically Reacting System,” J. Energy Res. Technol., 115, pp. 208–212. [CrossRef]
Sezer, I., Altin, I., and Bilgin, A., 2009, “Exergetic Analysis of Using Oxygenated Fuels in Spark-Ignition (SI) Engines,” Energy Fuels, 23(4), pp. 1801–1807. [CrossRef]
Liu, G.-J., Li, Z., Wang, M.-H., and Ni, W.-D., 2010, “Energy Savings by Co-Production: A Methanol/Electricity Case Study,” Appl. Energy, 87(9), pp. 2854–2859. [CrossRef]
Ugarte, S., and Metghalchi, M., 2005, “Evolution of Adiabatic Availability and Its Depletion Through Irreversible Processes,” Int. J. Exergy, 2(2), pp. 3–13. [CrossRef]
Chavannavar, P., and Caton, J., 2006, “Destruction of Availability (exergy) Due to Combustion Processes: A Parametric Study,” Proc. Inst. Mech. Eng., Part A, 220(7), pp. 655–668. [CrossRef]
Klausner, J. F., Li, Y., Darwish, M., and Mei, R., 2004, “Innovative Diffusion Driven Desalination Process,” ASME J. Energy Res. Technol., 126, pp. 219–225. [CrossRef]
Datta, A., and Som, S., 1999, “Energy and Exergy Balance in a Gas Turbine Combustor,” Proc. Inst. Mech. Eng., Part A, 213(1), pp. 23–32. [CrossRef]
Hutchins, T. E., and Metghalchi, M., 2003, “Energy and Exergy Analyses of the Pulse Detonation Engine,” ASME J. Eng. Gas Turbines Power, 125(4), pp. 1075–1080. [CrossRef]
Stanciu, D., Marinescu, M., and Isvoranu, D., 2000, “Second Law Analysis of the Turbulent Flat Plate Boundary Layer,” Int. J. Appl. Thermodyn., 3(3), pp. 99–104.
Teng, H., Kinoshita, C. M., Masutani, S. M., and Zhou, J., 1998, “Entropy Generation in Multicomponent Reacting Flows,” ASME J. Energy Res. Technol., 120(3), pp. 226–232. [CrossRef]
Arpaci, V. S., and Selamet, A., 1988, “Entropy Production in Flames,” Combust. Flame, 73(3), pp. 251–259. [CrossRef]
Datta, A., 2000, “Entropy Generation in a Confined Laminar Diffusion Flame,” Combust. Sci. Technol., 159(1), pp. 39–56. [CrossRef]
Nishida, K., Takagi, T., and Kinoshita, S., 2002, “Analysis of Entropy Generation and Exergy Loss During Combustion,” Proc. Combust. Inst., 29(1), pp. 869–874. [CrossRef]
Briones, A. M., Mukhopadhyay, A., and Aggarwal, S. K., 2009, “Analysis of Entropy Generation in Hydrogen-Enriched Methane-Air Propagating Triple Flames,” Int. J. Hydrogen Energy, 34(2), pp. 1074–1083. [CrossRef]
Li, Z. W., Chou, S. K., Shu, C., and Yang, W. M., 2005, “Entropy Generation During Microcombustion,” J. Appl. Phys., 97(8), p. 084914. [CrossRef]
Shuja, S. Z., Yilbas, B. S., and Khan, M., 2006, “Entropy Generation in Laminar Jet: Effect of Velocity Profiles At Nozzle Exit,” Heat Mass Transfer, 42(9), pp. 771–777. [CrossRef]
Narusawa, U., 1999, “The Second-Law Analysis of Convective Pattern Change in a Rectangular Cavity,” J. Fluid Mech., 392, pp. 361–377. [CrossRef]
Sciacovelli, A., and Verda, V., 2010, “Entropy Generation Minimization in a Tubular Solid Oxide Fuel Cell,” ASME J. Energy Res. Technol., 132, p. 012601. [CrossRef]
Stanciu, D., Marinescu, M., and Dobrovicescu, A., 2007, “The Influence of Swirl Angle on the Irreversibilities in Turbulent Diffusion Flames,” Int. J. Thermodyn., 10(4), pp. 143–153.
Stanciu, D., Isvoranu, D., Marinescu, M., and Gogus, Y., 2001, “Second Law Analysis of Diffusion Flames,” Int. J. Appl. Thermodyn., 4(1), pp. 1–18.
Lior, N., Sarmiento-Darkin, W., and Al-Sharqawi, H. S., 2006, “The Exergy Fields in Transport Processes: Their Calculation and Use,” Energy, 31(5), pp. 553–578. [CrossRef]
Herwig, H., and Kock, F., 2006, “Local Entropy Production in Turbulent Shear Flows: A Tool for Evaluating Heat Transfer Performance,” J. Therm. Sci., 15(2), pp. 159–167. [CrossRef]
Yapici, H., Kayataş, N., Albayrak, B., and Baştürk, G., 2005, “Numerical Calculation of Local Entropy Generation in a Methane-Air Burner,” Energy Convers. Manage., 46(11–12), pp. 1885–1919. [CrossRef]
Yapici, H., Kayataş, N., Albayrak, B., and Baştürk, G., 2005, “Numerical Study on Local Entropy Generation in a Burner Fueled With Various Fuels,” Heat Mass Transfer, 41(6), pp. 519–534. [CrossRef]
Iandoli, C. L., and Sciubba, E., 2010, “3-D Numerical Calculation of the Local Entropy Generation Rates in a Radial Compressor Stage,” Int. J. Thermodyn., 8(2), pp. 83–94.
Datta, A., 2005, “Effects of Gravity on Structure and Entropy Generation of Confined Laminar Diffusion Flames,” Int. J. Therm. Sci., 44(5), pp. 429–440. [CrossRef]
Raghavan, V., Gogos, G., Babu, V., and Sundararajan, T., 2007, “Entropy Generation During the Quasi-Steady Burning of Spherical Fuel Particles,” Int. J. Therm. Sci., 46(6), pp. 589–604. [CrossRef]
Sheikhi, M. R. H., Safari, M., and Metghalchi, H., 2012, “Large Eddy Simulation for Local Entropy Generation Analysis of Turbulent Flows,” J. Energy Res. Technol., 134(4), p. 041603. [CrossRef]
Yilbas, B. S., 2002, “Entropy Production During Laser Picosecond Heating of Copper,” J. Energy Res. Technol., 124, pp. 204–213. [CrossRef]
Call, F. W., 1998, “Dispersion—An Entropy Generator of Diffusion,” J. Energy Res. Technol., 120, pp. 149–153. [CrossRef]
Chen, S., Li, J., Han, H., Liu, Z., and Zheng, C., 2010, “Effects of Hydrogen Addition on Entropy Generation in Ultra-Lean Counter-Flow Methane-Air Premixed Combustion,” Int. J. Hydrogen Energy, 35(8), pp. 3891–3902. [CrossRef]
Okong'o, N., and Bellan, J., 2000, “Entropy Production of Emerging Turbulent Scales In a Temporal Supercritical n-Heptane/Nitrogen Three Dimensional Mixing Layer,” Proc. Combust. Inst., 28(1), pp. 467–504. [CrossRef]
Okong'o, N., and Bellan, J., 2002, “Direct Numerical Simulation of a Transitional Supercritical Binary Mixing Layer: Heptane and Nitrogen,” J. Fluid Mech., 464, pp. 1–34. [CrossRef]
Farran, R., and Chakraborty, N., 2013, “A Direct Numerical Simulation-Based Analysis of Entropy Generation in Turbulent Premixed Flames,” Entropy, 15(5), pp. 1540–1566. [CrossRef]
Safari, M., Sheikhi, M. R. H., Janbozorgi, M., and Metghalchi, H., 2010, “Entropy Transport Equation in Large Eddy Simulation for Exergy Analysis of Turbulent Combustion Systems,” Entropy, 12(3), pp. 434–444. [CrossRef]
Kuo, K. K., and Acharya, R., 2012, Fundamentals of Turbulent and Multi-Phase Combustion, Wiley, Hoboken, NJ.
Pope, S. B., 2013, “Small Scales, Many Species and the Manifold Challenges of Turbulent Combustion,” Proc. Combust. Inst., 34(1), pp. 1–31. [CrossRef]
Poinsot, T., and Veynante, D., 2011, Theoretical and Numerical Combustion, 3rd ed., R. T.Edwards, ed., Inc., Philadelphia, PA.
Echekki, T., and Mastorakos, E., 2011, Turbulent Combustion Modeling: Advances, New Trends and Perspectives, Springer, New York, NY.
Janicka, J., and Sadiki, A., 2005, “Large Eddy Simulation of Turbulent Combustion Systems,” Proc. Combust. Inst., 30, pp. 537–547. [CrossRef]
Pitsch, H., 2006, “Large-Eddy Simulation of Turbulent Combustion,” Annu. Rev. Fluid Mech., 38, pp. 453–482. [CrossRef]
Givi, P., 2006, “Filtered Density Function for Subgrid Scale Modeling of Turbulent Combustion,” AIAA J., 44(1), pp. 16–23. [CrossRef]
Sheikhi, M. R. H., Givi, P., and Pope, S. B., 2009, “Frequency-Velocity-Scalar Filtered Mass Density Function For Large Eddy Simulation of Turbulent Flows,” Phys. Fluids, 21(7), p. 075102. [CrossRef]
Sheikhi, M. R. H., Givi, P., and Pope, S. B., 2007, “Velocity-Scalar Filtered Mass Density Function For Large Eddy Simulation of Turbulent Reacting Flows,” Phys. Fluids, 19(9), p. 095106. [CrossRef]
Ansari, N., Jaberi, F. A., Sheikhi, M. R. H., and Givi, P., 2011, “Filtered Density Function as a Modern CFD tool,” Engineering Applications of CFD, R. S.Maher, ed., Vol. 1 of Fluid Mechanics and Its Applications, International Energy and Environment Foundation, Al-Najaf, Iraq, pp. 1–22.
Sheikhi, M. R. H., Drozda, T. G., Givi, P., and Pope, S. B., 2003, “Velocity-Scalar Filtered Density Function For Large Eddy Simulation of Turbulent Flows,” Phys. Fluids, 15(8), pp. 2321–2337. [CrossRef]
Drozda, T. G., Sheikhi, M. R. H., Madnia, C. K., and Givi, P., 2007, “Developments in Formulation and Application of the Filtered Density Function,” Flow Turbul. Combust., 78, pp. 35–67. [CrossRef]
Sheikhi, M. R. H., Drozda, T. G., Givi, P., Jaberi, F. A., and Pope, S. B., 2005, “Large eddy simulation of a turbulent nonpremixed piloted methane jet flame (Sandia flame D),” Proc. Combust. Inst., 30, pp. 549–556. [CrossRef]
Yilmaz, S. L., Nik, M. B., Sheikhi, M. R. H., Strakey, P. A., and Givi, P., 2010, “An Irregularly Portioned Lagrangian Monte Carlo Method For Turbulent Flow Simulation,” J. Sci. Comput., 47(1), pp. 109–125. [CrossRef]
Nik, M. B., Yilmaz, S. L., Givi, P., Sheikhi, M. R. H., and Pope, S. B., 2010, “Simulation of Sandia Flame D Using Velocity-Scalar Filtered Density Function,” AIAA J., 48(7), pp. 1513–1522. [CrossRef]
Ansari, N., Goldin, G. M., Sheikhi, M. R. H., and Givi, P., 2011, “Filtered Density Function Simulator on Unstructured Meshes,” J. Comput. Phys., 230(19), pp. 7132–7150. [CrossRef]
Nik, M., Yilmaz, S., Sheikhi, M. R. H., and Givi, P., 2010, “Grid Resolution Effects on VSFMDF/LES,” Flow Turbul. Combust., 85(3–4), pp. 677–688. [CrossRef]
Ansari, N., Pisciuneri, P. H., Strakey, P. A., and Givi, P., 2012, “Scalar-Filtered Mass-Density-Function Simulation of Swirling Reacting Flows on Unstructured Grids,” AIAA J., 50(11), pp. 2476–2482. [CrossRef]
James, S., Zhu, J., and Anand, M. S., 2007, “Large Eddy Simulations of Turbulent Flames Using the Filtered Density Function Model,” Proc. Combust. Inst., 31(2), pp. 1737–1745. [CrossRef]
Chen, J. Y., 2007, “A Eulerian PDF Scheme for LES of Nonpremixed Turbulent Combustion With Second-Order Accurate Mixture Fraction,” Combust. Theory Model., 11(5), pp. 675–695. [CrossRef]
McDermott, R., and Pope, S. B., 2007, “A Particle Formulation for Treating Differential Diffusion in Filtered Density Function Methods,” J. Comput. Phys., 226, pp. 947–993. [CrossRef]
Raman, V., and Pitsch, H., 2007, “A Consistent LES/Filtered-Density Function Formulation for the Simulation of Turbulent Flames With Detailed Chemistry,” Proc. Combust. Inst., 31, pp. 1711–1719. [CrossRef]
Yaldizli, M., Mehravaran, K., and Jaberi, F. A., 2010, “Large-Eddy Simulations of Turbulent Methane Jet Flames With Filtered Mass Density Function,” Int. J. Heat Mass Transfer, 53(11–12), pp. 2551–2562. [CrossRef]
Drozda, T. G., Wang, G., Sankaran, V., Mayo, J. R., Oefelein, J. C., and Barlow, R. S., 2008, “Scalar Filtered Mass Density Functions in Nonpremixed Turbulent Jet Flames,” Combust. Flame, 155(1–2), pp. 54–69. [CrossRef]
Zhao, W., Zhang, C., and Chen, C., 2011, “Large Eddy Simulation of Bluff-Body Stabilized Flames Using a Multi-Environment Filtered Density Function Model,” Proc. Combust. Inst., 33(1), pp. 1347–1353. [CrossRef]
van Vliet, E., Derksen, J. J., and van den Akker, H. E. A., 2005, “Turbulent Mixing in a Tubular Reactor: Assessment of an FDF/LES Approach,” AIChE J., 51(3), pp. 725–739. [CrossRef]
Afshari, A., Jaberi, F. A., and Shih, T.-H., 2008, “Large-Eddy Simulation of Turbulent Flows in an Axisymmetric Dump Combustor,” AIAA J., 46(7), pp. 1576–1592. [CrossRef]
Williams, F. A., 1985, Combustion Theory, 2nd ed., The Benjamin/Cummings Publishing Company, Menlo Park, CA.
Pope, S. B., 2000, Turbulent Flows, Cambridge University Press, Cambridge, UK.
Sagaut, P., 2005, Large Eddy Simulation for Incompressible Flows, Springer-Verlag, New York.
Colucci, P. J., Jaberi, F. A., Givi, P., and Pope, S. B., 1998, “Filtered Density Function For Large Eddy Simulation of Turbulent Reacting Flows,” Phys. Fluids, 10(2), pp. 499–515. [CrossRef]
Jaberi, F. A., Colucci, P. J., James, S., Givi, P., and Pope, S. B., 1999, “Filtered Mass Density Function For Large Eddy Simulation of Turbulent Reacting Flows,” J. Fluid Mech., 401, pp. 85–121. [CrossRef]
Kloeden, P. E., Platen, E., and Schurz, H., 1997, Numerical Solution of Stochastic Differential Equations through Computer Experiments, corrected 2nd printing ed., Springer-Verlag, New York.
Kennedy, C. A., and Carpenter, M. H., 1994,“Several New Numerical Methods for Compressible Shear-Layer Simulations,” Appl. Numer. Math., 14, pp. 397–433. [CrossRef]
Barlow, R. S., 2011, Sandia National Laboratories, TNF Workshop website. http://www.ca.sandia.gov/TNF
Frank, J. H., and Barlow, R. S., 1998, “Simultaneous Rayleigh, Raman, and LIF Measurements in Turbulent Premixed Methane-Air Flames,” Proc. Combust. Inst., 27, pp. 759–766. [CrossRef]
Xu, J., and Pope, S. B., 2000, “PDF Calculations of Turbulent Nonpremixed Flames With Local Extinction,” Combust. Flame, 123, pp. 281–307. [CrossRef]
Pitsch, H., and Steiner, H., 2000, “Large Eddy Simulation of a Turbulent Piloted Methane/Air Diffusion Flame (Sandia flame D),” Phys. Fluids, 12(10), pp. 2541–2554. [CrossRef]
Vreman, A. W., Albrecht, B. A., van Oijen, J. A., de Goey, L. P. H., and Bastiaans, R. J. M., 2008, “Premixed and Nonpremixed Generated Manifolds in Large-Eddy Simulation of Sandia Flame D and F,” Combust. Flame, 153(3), pp. 394–416. [CrossRef]
Cai, J., Wang, D., Tong, C., Barlow, R. S., and Karpetis, A. N., 2009, “Investigation of Subgrid-Scale Mixing of Mixture Fraction and Temperature in Turbulent Partially Premixed Flames,” Proc. Combust. Inst., 32(1), pp. 1517–1525. [CrossRef]
Schneider, C., Dreizler, A., Janicka, J., and Hassel, E. P., 2003, “Flow Field Measurements of Stable and Locally extinguishing Hydrocarbon-Fuelled Jet Flames,” Combust. Flame, 135(1), pp. 185–190. [CrossRef]
Peters, N., 2000, Turbulent Combustion, Cambridge University Press, Cambridge, UK.
Danaila, I., and Boersma, B. J., 2000, “Direct Numerical Simulation of Bifurcating Jets,” Phys. Fluids, 12(5), pp. 1255–1257. [CrossRef]
Vreman, B., Geurts, B., and Kuerten, H., 1997, “Large-Eddy Simulation of the Turbulent Mixing Layer,” J. Fluid Mech., 339, pp. 357–390. [CrossRef]


Grahic Jump Location
Fig. 1

Instantaneous contours of entropy (kJ/kg · K) predicted by the En-FDF

Grahic Jump Location
Fig. 2

Radial variation of (a) mean temperature (K) and (b) mixture fraction at x/D = 15. The circles denote the experimental data.

Grahic Jump Location
Fig. 3

Radial variation of entropy (kJ/kg · K) statistics: (a) mean and (b) resolved (solid line) and total (dashed line) RMS fields at x/D = 15. The circles denote the experimental data.

Grahic Jump Location
Fig. 4

Instantaneous contours of (a) temperature (K) and (b) mixture fraction at z = 0 plane

Grahic Jump Location
Fig. 5

Instantaneous contours of entropy generation (J/K.m3 · s) contributions due to (a) heat conduction, (b) chemical reaction, (c) mass diffusion, and (d) viscous dissipation at z = 0 plane




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In