Research Papers: Fuel Combustion

Physicochemical Characterization and Pyrolysis Kinetic Study of Sugarcane Bagasse Using Thermogravimetric Analysis

[+] Author and Article Information
Anil Kumar Varma

Department of Chemical Engineering,
Indian Institute of Technology Roorkee,
Roorkee, Uttarakhand 247667, India
e-mail: vermaanil7@gmail.com

Prasenjit Mondal

Department of Chemical Engineering,
Indian Institute of Technology Roorkee,
Roorkee, Uttarakhand 247667, India
e-mail: pmpndal.iitr@gmail.com

1Corresponding author.

Contributed by the Advanced Energy Systems Division of ASME for publication in the JOURNAL OF ENERGY RESOURCES TECHNOLOGY. Manuscript received July 20, 2015; final manuscript received December 24, 2015; published online March 10, 2016. Assoc. Editor: Yiannis Levendis.

J. Energy Resour. Technol 138(5), 052205 (Mar 10, 2016) (11 pages) Paper No: JERT-15-1264; doi: 10.1115/1.4032729 History: Received July 20, 2015; Revised December 24, 2015

The present study was conducted to investigate the physicochemical properties and pyrolysis kinetics of sugarcane bagasse (SB). The physiochemical properties of SB were determined to examine its potential for pyrolysis. The physiochemical properties such as proximate analysis, ultimate analysis, heating values, lignocellulosic composition, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) of SB were investigated. The pyrolysis experiments were conducted in a nonisothermal thermogravimetric analyzer (TGA) to understand the thermal degradation behavior of SB. The activation energy (Ea) of SB pyrolysis was calculated by model-free Kissinger–Akahira–Sunose (KAS) and Ozawa–Flynn–Wall (OFW) methods. Average values of activation energy determined through KAS and OFW methods are found as 91.64 kJ/mol and 104.43 kJ/mol, respectively. Variation in the activation energy with degree of conversion was observed, which shows that pyrolysis is a complex process composed of several reactions. Coats–Redfern method was used to calculate the pre-exponential factor and reaction order. Conversion of SB due to heat treatment computed by using the kinetic parameters is found to be in good agreement with the experimental conversion data, and the maximum error limit between the experimental and predicted conversions is 8.5% for 5 °C/min, 6.0% for 10 °C/min, and 11.6% for 20 °C/min. The current investigation proves the suitability of SB as a potential feedstock for pyrolysis.

Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.


Doshi, P. , Srivastava, G. , Pathak, G. , and Dikshit, M. , 2014, “ Physicochemical and Thermal Characterization of Non–Edible Oilseed Residual Waste as Sustainable Solid Biofuel,” Waste Manage., 34(10), pp. 1836–1846. [CrossRef]
Demirbas, A. , 2009, “ Global Renewable Energy Projections,” Energy Sources, Part B, 4(2), pp. 212–224. [CrossRef]
Ko, W. B. , and Bin, L. H. , 2004, “ Gikoko's Experiences With Industrial Waste Wood Dust Utilization and the Development and Commercialization of Biomass Gasification and Power Generation,” The International Workshop on Biomass and Clean Fossil Fuel Power Plant Technology, Jakarta, Indonesia, Jan. 12–13, pp. 10–28.
Ravindranath, N. H. , and Hall, D. O. , 1995, Biomass, Energy and Environment: Developing Country Perspective From India, Oxford University Press, Oxford, UK.
Kazanc, F. , Khatami, R. , Manoel Crnkovic, P. , and Levendis, Y. A. , 2011, “ Emissions of NOx and SO2 From Coals of Various Ranks, Bagasse, and Coal-Bagasse Blends Burning in O2/N2 and O2/CO2 Environments,” Energy Fuels, 25(7), pp. 2850–2861. [CrossRef]
Ministry of Agriculture, 2013, “ Status Paper on Sugarcane,” Directorate of Sugarcane Development, Lucknow India, http://farmer.gov.in/imagedefault/pestanddiseasescrops/sugarcane.pdf
Partha, N. , 2006, “ Recovery of Chemicals From Pressmud—A Sugar Industry Waste,” Indian Chem. Eng., Sect. A, 48(3), pp. 160–163.
Mothé, C. G. , and Miranda, I. C. , 2009, “ Characterization of Sugarcane and Coconut Fibers by Thermal Analysis and FTIR,” J. Therm. Anal. Calorim., 97(2), pp. 661–665. [CrossRef]
Almazan, O. , Gonzalez, L. , Galvez, L. , Lalouette, J. A. , Bachraz, D. Y. , and Sukerdeep, N. , 1999, “ The Sugar Cane, Its By-Products and Co-Products,” Third Annual Meeting of Agricultural Scientists, Réduit, Mauritius, Nov. 17–18, 1998, pp. 13–25.
Katyal, S. , Thambimuthu, K. , and Valix, M. , 2003, “ Carbonisation of Bagasse in a Fixed Bed Reactor: Influence of Process Variables on Char Yield and Characteristics,” Renewable Energy, 28(5), pp. 713–725. [CrossRef]
Paturau, J. M. , 1987, “ Alternative Uses of Sugarcane and its Byproducts in Agro Industries,” Food and Agriculture Organization of the United Nations, Rome, http://www.fao.org/docrep/003/s8850e/s8850e03.htm
Yadav, R. L. , and Solomon, S. , 2006, “ Potential of Developing Sugarcane By-Product Based Industries in India,” Sugar Tech., 8(2), pp. 104–111. [CrossRef]
Santos, N. A. , Magriotis, Z. M. , Saczk, A. A. , Fássio, G. T. , and Vieira, S. S. , 2015, “ Kinetic Study of Pyrolysis of Castor Beans (Ricinus communis L.) Presscake: An Alternative Use for Solid Waste Arising From the Biodiesel Production,” Energy Fuels, 29(4), pp. 2351–2357. [CrossRef]
Santos, K. G. , Lira, T. S. , Murata, V. V. , Gianesella, M. , and Barrozo, M. A. S. , 2010, “ Pyrolysis of Sugarcane Bagasse: A Consecutive Reactions Kinetic Model From TGA Experiments,” Mater. Sci. Forum., 660–661, pp. 593–598. [CrossRef]
Kannan, P. , Ibrahim, S. , Suresh Kumar Reddy, K. , Al Shoaibi, A. , and Srinivasakannan, C. , 2013, “ A Comparative Analysis of the Kinetic Experiments in Polyethylene Pyrolysis,” ASME J. Energy Res. Technol., 136(2), p. 024001. [CrossRef]
Ceylan, S. , and Topçu, Y. , 2014, “ Pyrolysis Kinetics of Hazelnut Husk Using Thermogravimetric Analysis,” Bioresour. Technol., 156, pp. 182–188. [CrossRef] [PubMed]
Kumar, A. , Negi, Y. S. , Choudhary, V. , and Bhardwaj, N. K. , 2014, “ Characterization of Cellulose Nanocrystals Produced by Acid-Hydrolysis From Sugarcane Bagasse as Agro-Waste,” J. Mater. Phys. Chem., 2(1), pp. 1–8.
Mayor, J. R. , and Williams, A. , 2010, “ Residence Time Influence on the Fast Pyrolysis of Loblolly Pine Biomass,” ASME J. Energy Res. Technol., 132(4), p. 041801. [CrossRef]
Greenhalf, C. E. , Nowakowski, D. J. , and Bridgwater, A. V. , 2012, “ Thermochemical Characterisation of Straws and High Yielding Perennial Grasses,” Ind. Crops Prod., 36(1), pp. 449–459. [CrossRef]
Alwani, M. S. , Khalid, H. P. S. A. , Sulaiman, O. , Islam, M. N. , and Dungani, R. , 2014, “ An Approach to Using Agricultural Waste Fibres in Biocomposites Application: Thermogravimetric Analysis and Activation Energy Study,” Bioresources, 9(1), pp. 218–230.
Slopiecka, K. , Bartocci, P. , and Fantozzi, F. , 2012, “ Thermogravimetric Analysis and Kinetic Study of Poplar Wood Pyrolysis,” Appl. Energy, 97, pp. 491–497. [CrossRef]
Cai, J. M. , and Bi, L. S. , 2009, “ Kinetic Analysis of Wheat Straw Pyrolysis Using Isoconversional Methods,” J. Therm. Anal. Calorim., 98(1), pp. 325–330. [CrossRef]
Islam, M. A. , Asif, M. , and Hameed, B. H. , 2015, “ Pyrolysis Kinetics of Raw and Hydrothermally Carbonized Karanj (Pongamia Pinnata) Fruit Hulls Via Thermogravimetric Analysis,” Bioresour. Technol., 179, pp. 227–233. [CrossRef] [PubMed]
Sittisun, P. , Tippayawong, N. , and Wattanasiriwech, D. , 2014, “ Pyrolysis Characteristics and Kinetics of Waste Corn Cobs,” International Graduate Research Conference, Chiang Mai, Thailand, Dec. 12, pp. 192–197.
Ounas, A. , Aboulkas, A. , Bacaoui, A. , and Yaacoubi, A. , 2011, “ Pyrolysis of Olive Residue and Sugar Cane Bagasse: Non-Isothermal Thermogravimetric Kinetic Analysis,” Bioresour. Technol., 102(24), pp. 11234–11238. [CrossRef] [PubMed]
Leroy, V. , Cancellieri, D. , Leoni, E. , and Rossi, J. L. , 2010, “ Kinetic Study of Forest Fuels by TGA: Model-Free Kinetic Approach for the Prediction of Phenomena,” Thermochim. Acta, 497(1), pp. 1–6. [CrossRef]
Biagini, E. , Fantei, A. , and Tognotti, L. , 2008, “ Effect of the Heating Rate on the Devolatilization of Biomass Residues,” Thermochim. Acta, 472(1), pp. 55–63. [CrossRef]
Khonde, R. D. , and Chaurasia, A. S. , 2015, “ Pyrolysis of Sawdust, Rice Husk and Sugarcane Bagasse: Kinetic Modeling and Estimation of Kinetic Parameters Using Different Optimization Tools,” J. Inst. Eng. (India): Ser. E, 96(1), pp. 23–30. [CrossRef]
El-Sayed, S. A. , and Mostafa, M. E. , 2014, “ Pyrolysis Characteristics and Kinetic Parameters Determination of Biomass Fuel Powders by Differential Thermal Gravimetric Analysis (TGA/DTG),” Energy Convers. Manage., 85, pp. 165–172. [CrossRef]
Aboyade, A. O. , Görgens, J. F. , Carrier, M. , Meyer, E. L. , and Knoetze, J. H. , 2013, “ Thermogravimetric Study of the Pyrolysis Characteristics and Kinetics of Coal Blends With Corn and Sugarcane Residues,” Fuel Process. Technol., 106, pp. 310–320. [CrossRef]
Aboyade, A. O. , Carrier, M. , Meyer, E. L. , Knoetze, J. H. , and Görgens, J. F. , 2012, “ Model Fitting Kinetic Analysis and Characterisation of the Devolatilization of Coal Blends With Corn and Sugarcane Residues,” Thermochim. Acta, 530, pp. 95–106. [CrossRef]
Aboyade, A. O. , Hugo, T. J. , Carrier, M. , Meyer, E. L. , Stahl, R. , Knoetze, J. H. , and Görgens, J. F. , 2011, “ Non-Isothermal Kinetic Analysis of the Devolatilization of Corn Cobs and Sugar Cane Bagasse in an Inert Atmosphere,” Thermochim. Acta, 517(1), pp. 81–89. [CrossRef]
Munir, S. , Daood, S. S. , Nimmo, W. , Cunliffe, A. M. , and Gibbs, B. M. , 2009, “ Thermal Analysis and Devolatilization Kinetics of Cotton Stalk, Sugar Cane Bagasse and Shea Meal Under Nitrogen and Air Atmospheres,” Bioresour. Technol., 100(3), pp. 1413–1418. [CrossRef] [PubMed]
Aiman, S. , and Stubington, J. F. , 1993, “ The Pyrolysis Kinetics of Bagasse at Low Heating Rates,” Biomass Bioenergy, 5(2), pp. 113–120. [CrossRef]
Mahinpey, N. , Murugan, P. , Mani, T. , and Raina, R. , 2009, “ Analysis of Bio-Oil, Biogas, and Biochar From Pressurized Pyrolysis of Wheat Straw Using a Tubular Reactor,” Energy Fuels, 25(5), pp. 2736–2742. [CrossRef]
Friedl, A. , Padouvas, E. , Rotter, H. , and Varmuza, K. , 2005, “ Prediction of Heating Values of Biomass Fuel From Elemental Composition,” Anal. Chim. Acta, 544(1–2), pp. 191–198. [CrossRef]
Basu, P. , 2010, Biomass Gasification and Pyrolysis: Practical Design and Theory, Academic Press, Burlington, MA.
Li, S. , Xu, S. , Liu, S. , Yang, C. , and Lu, Q. , 2004, “ Fast Pyrolysis of Biomass in Free-Fall Reactor for Hydrogen-Rich Gas,” Fuel Process. Technol., 85(8–10), pp. 1201–1211. [CrossRef]
Chutia, R. S. , Kataki, R. , and Bhaskar, T. , 2013, “ Thermogravimetric and Decomposition Kinetic Studies of Mesua ferrea L. Deoiled Cake,” Bioresour. Technol., 139, pp. 66–72. [CrossRef] [PubMed]
Asadullah, M. , Rahman, M. A. , Ali, M. M. , Rahman, M. S. , Motin, M. A. , Sultan, M. B. , and Alam, M. R. , 2007, “ Production of Bio-Oil From Fixed Bed Pyrolysis of Bagasse,” Fuel, 86(16), pp. 2514–2520. [CrossRef]
Graboski, M. , and Bain, R. , 1981, Biomass Gasification: Principles and Technology, T. B. Reed , ed., Noyes Data Corp., Park Ridge, NJ, pp. 154–182.
Fernandes, E. R. K. , Marangoni, C. , Souza, O. , and Sellin, N. , 2013, “ Thermochemical Characterization of Banana Leaves as a Potential Energy Source,” Energy Convers. Manage., 75, pp. 603–608. [CrossRef]
McKendry, P. , 2002, “ Energy Production From Biomass (Part 1): Overview of Biomass,” Bioresour. Technol., 83(1), pp. 37–46. [CrossRef] [PubMed]
Shen, D. K. , Gu, S. , Luo, K. H. , Bridgwater, A. V. , and Fang, M. X. , 2009, “ Kinetic Study on Thermal Decomposition of Woods in Oxidative Environment,” Fuel, 88(6), pp. 1024–1030. [CrossRef]
Sun, Z. , Shen, J. , Jin, B. , and Wei, L. , 2010, “ Combustion Characteristics of Cotton Stalk in FBC,” Biomass Bioenergy, 34(5), pp. 761–770. [CrossRef]
Safi, M. J. , Mishra, I . M. , and Prasad, B. , 2004, “ Global Degradation Kinetics of Pine Needles in Air,” Thermochim. Acta, 412(1), pp. 155–162. [CrossRef]
Sellin, N. , de Oliveira, B. G. , Marangoni, C. , Souzaa, O. , de Oliveira, A. P. N. , and de Oliveira, T. M. N. , 2013, “ Use of Banana Culture Waste to Produce Briquettes,” Chem. Eng. Trans., 32, pp. 349–354.
Carrier, M. , Joubert, J. E. , Danje, S. , Hugo, T. , Görgens, J. , and Knoetze, J. H. , 2013, “ Impact of the Lignocellulosic Material on Fast Pyrolysis Yields and Product Quality,” Bioresour. Technol., 150, pp. 129–138. [CrossRef] [PubMed]
Khatami, R. , Stivers, C. , Joshi, K. , Levendis, Y. A. , and Sarofim, A. F. , 2012, “ Combustion Behavior of Single Particles From Three Different Coal Ranks and From Sugar Cane Bagasse in O2/N2 and O2/CO2 Atmospheres,” Combust. Flame, 159(3), pp. 1253–1271. [CrossRef]
Shadangi, K. P. , and Mohanty, K. , 2014, “ Kinetic Study and Thermal Analysis of the Pyrolysis of Non-Edible Oilseed Powders by Thermogravimetric and Differential Scanning Calorimetric Analysis,” Renewable Energy, 63, pp. 337–344. [CrossRef]
Yu, C. T. , Chen, W. H. , Men, L. C. , and Hwang, W. S. , 2009, “ Microscopic Structure Features Changes of Rice Straw Treated by Boiled Acid Solution,” Ind. Crop. Prod., 29(2–3), pp. 308–315. [CrossRef]
Cruz, G. , Braz, C. E. M. , Ferreira, S. L. , dos Santos, A. M. , and Crnkovic, P. M. , 2013, “ Physicochemical Properties of Brazilian Biomasses: Potential Applications as Renewable Energy Source,” 22nd International Congress of Mechanical Engineering (COBEM 2013), Ribeirão Preto, Brazil, Nov. 3–7.
Sait, H. H. , Hussain, A. , Salema, A. A. , and Ani, F. N. , 2012, “ Pyrolysis and Combustion Kinetics of Date Palm Biomass Using Thermogravimetric Analysis,” Bioresour. Technol., 118, pp. 382–389. [CrossRef] [PubMed]
Nyakuma, B. B. , Johari, A. , Ahmad, A. , and Abdullah, T. A. T. , 2014, “ Thermogravimetric Analysis of the Fuel Properties of Empty Fruit Bunch Briquettes,” J. Teknol. 67(3), pp. 79–82.
Lopez-Velazquez, M. A. , Santes, V. , Balmaseda, J. , and Torres-Garcia, E. , 2013, “ Pyrolysis of Orange Waste: A Thermo-Kinetic Study,” J. Anal. Appl. Pyrolysis, 99, pp. 170–177. [CrossRef]
Corrales, R. C. N. R. , Mendes, F. M. T. , Perrone, C. C. , Sant'anna, C. , de Souza, W. , Abud, Y. , Bon, E. P. , Ferreira-Leitão, V. , 2012, “ Structural Evaluation of Sugar Cane Bagasse Steam Pretreated in the Presence of CO2 and SO2,” Biotechnol. Biofuels, 5, p. 36. [CrossRef] [PubMed]
Dávila-Jiménez, M. M. , Elizalde-González, M. P. , and Peláez-Cid, A. A. , 2005, “ Adsorption Interaction Between Natural Adsorbents and Textile Dyes in Aqueous Solution,” Colloids Surf. A, 254(1–3), pp. 107–114. [CrossRef]
Apaydin-Varol, E. , Pütün, E. , and Pütün, A. E. , 2007, “ Slow Pyrolysis of Pistachio Shell,” Fuel, 86(12), pp. 1892–1899. [CrossRef]
Pindoria, R. V. , Chatzakis, I . N. , Lim, J. Y. , Herod, A. A. , Dugwell, D. R. , and Kandiyoti, R. , 1999, “ Hydropyrolysis of Sugar Cane Bagasse: Effect of Sample Configuration on Bio-Oil Yields and Structures From Two Bench-Scale Reactors,” Fuel, 78(1), pp. 55–63. [CrossRef]
Bilba, K. , and Ouensanga, A. , 1996, “ Fourier Transform Infrared Spectroscopic Study of Thermal Degradation of Sugar Cane Bagasse,” J. Anal. Appl. Pyrolysis, 38(1), pp. 61–73. [CrossRef]
Zhao, Y. , Ding, M. , Dou, Y. , Fan, X. , Wang, Y. , and Wei, X. , 2014, “ Comparative Study on the Pyrolysis Behaviors of Corn Stalk and Pine Sawdust Using TG-MS,” Trans. Tianjin University, 20(2), pp. 91–96. [CrossRef]
Aburto, J. , Moran, M. , Galano, A. , and Torres-García, E. , 2015, “ Non-Isothermal Pyrolysis of Pectin: A Thermochemical and Kinetic Approach,” J. Anal. Appl. Pyrolysis, 112, pp. 94–104. [CrossRef]
Asadieraghi, M. , and Daud, W. M. A. W. , 2014, “ Characterization of Lignocellulosic Biomass Thermal Degradation and Physiochemical Structure: Effects of Demineralization by Diverse Acid Solutions,” Energy Convers. Manage., 82, pp. 71–82. [CrossRef]
Yang, H. , Yan, R. , Chen, H. , Lee, D. H. , Liang, D. T. , and Zheng, C. , 2006, “ Mechanism of Palm Oil Waste Pyrolysis in a Packed Bed,” Energy Fuels, 20(3), pp. 1321–1328. [CrossRef]
Jeguirim, M. , and Trouvé, G. , 2009, “ Pyrolysis Characteristics and Kinetics of Arundo Donax Using Thermogravimetric Analysis,” Bioresour. Technol., 100(17), pp. 4026–4031. [CrossRef] [PubMed]
Guerrero, M. R. B. , Marques da Silva Paula, M. , Zaragoza, M. M. , Salinas Gutiérrez, J. , Guzmán Velderrain, V. , Lopez, A. , and Collins-Martínez, V. , 2014, “ Thermogravimetric Study on the Pyrolysis Kinetics of Apple Pomace as Waste Biomass,” Int. J. Hydrogen Energy, 39(29), pp. 16619–16627. [CrossRef]
Gai, C. , Dong, Y. , and Zhang, T. , 2013, “ The Kinetic Analysis of the Pyrolysis of Agricultural Residue Under Non-Isothermal Conditions,” Bioresour. Technol., 127, pp. 298–305. [CrossRef] [PubMed]
Sharma, A. , and Rao, T. R. , 1999, “ Kinetics of Pyrolysis of Rice Husk,” Bioresour. Technol., 67(1), pp. 53–59. [CrossRef]
Damartzis, T. , Vamvuka, D. , Sfakiotakis, S. , and Zabaniotou, A. , 2011, “ Thermal Degradation Studies and Kinetic Modeling of Cardoon (Cynara Cardunculus) Pyrolysis Using Thermogravimetric Analysis (TGA),” Bioresour. Technol., 102(10), pp. 6230–6238. [CrossRef] [PubMed]


Grahic Jump Location
Fig. 1

Photograph of SB (a) before grinding and (b) after grinding

Grahic Jump Location
Fig. 3

FTIR spectra of SB

Grahic Jump Location
Fig. 4

TG/DTG curves of SB at a heating rate of 10 °C/min

Grahic Jump Location
Fig. 5

Kinetic plots for SB using (a) KAS method and (b) OFW method

Grahic Jump Location
Fig. 6

Variations in activation energy with conversion for KAS and OFW methods

Grahic Jump Location
Fig. 7

Activation energy of different biomass computed through (a) KAS method and (b) OFW method at different conversion

Grahic Jump Location
Fig. 8

Conversion curves of SB at different heating rates

Grahic Jump Location
Fig. 9

Simulation of SB pyrolysis using the kinetic data (n = 10) calculated for (a) 5 °C/min, (b) 10 °C/min, and (c) 20 °C/min



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In