Research Papers: Energy Systems Analysis

Exergy-Based Study of a Binary Rankine Cycle

[+] Author and Article Information
Mathias Hofmann

Institute for Energy Engineering,
Technische Universität Berlin,
Berlin 10587, Germany
e-mail: hofmann@iet.tu-berlin.de

George Tsatsaronis

Institute for Energy Engineering,
Technische Universität Berlin,
Berlin 10587, Germany
e-mail: tsatsaronis@iet.tu-berlin.de

1Corresponding author.

2Or also economiser, superheater, etc.

Contributed by the Advanced Energy Systems Division of ASME for publication in the JOURNAL OF ENERGY RESOURCES TECHNOLOGY. Manuscript received October 30, 2015; final manuscript received March 16, 2016; published online June 14, 2016. Assoc. Editor: Alojz Poredos.

J. Energy Resour. Technol 138(6), 062003 (Jun 14, 2016) (7 pages) Paper No: JERT-15-1414; doi: 10.1115/1.4033303 History: Received October 30, 2015; Revised March 16, 2016

The aim of this work is to study a binary Rankine process with a significantly higher efficiency compared to a conventional coal-fired power plant. This paper focuses on the design of the process and especially on an efficient combination of flue gas, potassium, and water streams in the components of the steam generator, such as economizers, evaporators, and superheaters, to decrease the overall exergy destruction. Based on a literature review, a base case for a coal-fired binary Rankine cycle with potassium and water as working fluids was developed and, in order to evaluate the thermodynamic quality of several variants, comparative exergy analyses were conducted. A simulation of the process and calculation of the values for the streams were carried out by using the flow-sheeting program CycleTempo, which simultaneously solves the mass and energy balances and contains property functions for the specific enthalpy and entropy of all the substances used. Necessary assumptions are predominantly based on literature data or they are discussed in the paper. We present the exergy analysis of the overall process that includes the flue gas streams as well as the potassium and water cycles. A design analysis and sensitivity studies show the effects of stream combinations and key parameters on the net efficiency, which is higher than 50%.

Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.


Moran, M. J. , and Shapiro, H. N. , 2006, Fundamentals of Engineering Thermodynamics, 5th ed., Wiley, Chichester, UK.
Emmet, W. L. R. , 1913, “ Power From Mercury Vapor,” Trans. AIEE, 32(2), pp. 2133–2149.
Emmet, W. L. R. , 1924, “ The Emmet Mercury-Vapor Process,” Trans. ASME, 46, pp. 253–285.
Emmet, W. L. R. , 1937, “ Status of the Emmet Mercury-Vapor Process,” Mech. Eng., 59, p. 840.
Birnbaum, U. , Bongartz, R. , Linssen, J. , Markewitz, P. , and Vögele, S. , 2010, “ Energietechnologien 2050—Schwerpunkte für Forschung und Entwicklung: Fossil basierte Kraftwerkstechnologien, Wärmetransport, Brennstoffzellen,” Institut für Energieforschung, Jülich, Germany, STE Research Report No. 01/2010.
Fraas, A. , 1966, “ A Potassium-Steam Binary Vapor Cycle for a Molten-Salt Reactor Power Plant,” ASME J. Eng. Power, 88(4), pp. 355–366. [CrossRef]
Fraas, A. , 1973, “ A Potassium-Steam Binary Vapor Cycle for Better Fuel Economy and Reduced Thermal Pollution,” ASME J. Eng. Power, 95(1), pp. 53–63. [CrossRef]
Zipkin, M. , and Schnetzer, E. , 1960, “ Design Compromises in Space Power Systems,” 10th International Astronautical Congress London 1959, F. Hecht, ed., Springer, Berlin, pp. 560–575.
Ewing, C. T. , Stone, J. P. , Spann, J. R. , and Miller, R. R. , 1966, “ High Temperature Properties of Potassium,” J. Chem. Eng. Data, 11(4), pp. 460–468. [CrossRef]
Foust, O. , ed., 1972, Sodium-NaK Engineering Handbook (Sodium Chemistry and Physical Properties), Vol. 1, Gordon and Breach, New York.
Collier, J. , Cox, R. , Evans, L. , and Bainbridge, G. , 1974, “ Potassium/Steam Cycle for a High Efficiency Gas-Cooled Reactor Power Station,” Electr. Rev., 195(16), pp. 565–568.
Ganic, E. , and Seider, W. , 1977, “ Computer Simulation of Potassium-Steam Combined-Cycle, Electrical Power Plants,” Comput. Chem. Eng., 1(3), pp. 161–169. [CrossRef]
Rajakovics, G. E. , 1974, “ Extrem hohe Kraftwerkswirkungsgrade durch Dreifach-Dampfprozeß,” ÖZE, 27(4), pp. 102–126 (in German).
Brockel, D. , 1984, “ Der Dreifachdampfprozeß,” VGB Kraftwerkstech., 64(3), pp. 201–210 (in German).
von Lojewski, D. , and Jansing, W. , 1989, “ Der Zweifachdampfprozeß: Ein wirtschaftliches Konzept der Zukunft?,” VGB Kraftwerkstech., 69(2), pp. 138–147 (in German).
Urban, H. , Haneke, R. , von Lojewski, D. , Mair, R. , Pannen, H. , Schiemann, W. , and Schulz, W. , 1988, “ Entwicklung eines Zweifach-Dampfprozesses mit Kalium-und Wasser-/Dampfkreislauf für Kohlekraftwerke (BRC Projekt),” Federal Ministry for Research and Technology, Deutsche Babcock Werke, Oberhausen, Germany.
Teubner, H. , 1992, “ Entwicklung eines Zweifach-Dampfprozesses mit Kalium-und Wasser-/Dampfkreislauf—Teil 1: Kaliumtechnologie,” Federal Ministry for Research and Technology, Siemens, Bergisch Gladbach, Germany.
Angelino, G. , and Invernizzi, C. , 2006, “ Binary and Ternary Liquid Metal-Steam Cycles for High-Efficiency Coal Power Stations,” Proc. Inst. Mech. Eng., Part A, 220(3), pp. 195–205. [CrossRef]
Saunderson, D. J. , and Budiman, R. A. , 2011, “ Analysis of Binary Cycle Efficiency Using Redlich-Kwong Equation of State,” Proc. Inst. Mech. Eng., Part A, 225(5), pp. 567–578. [CrossRef]
Woudstra, N. , Woudstra, T. , Pirone, A. , and van der Stelt, T. , 2010, “ Thermodynamic Evaluation of Combined Cycle Plants,” Energy Convers. Manage., 51(5), pp. 1099–1110. [CrossRef]
Effenberger, H. , 2000, Dampferzeugung, Springer, Berlin.
Eisermann, W. , Johnson, P. , and Conger, W. , 1980, “ Estimating Thermodynamic Properties of Coal, Char, Tar and Ash,” Fuel Process. Technol., 3(1), pp. 39–53. [CrossRef]
Bakshi, B. R. , Gutowski, T. G. , and Sekulić, D. P. , eds., 2011, Thermodynamics and the Destruction of Resources, Cambridge University Press, New York.
Singer, J. G. , 1991, Combustion Fossil Power, 4th ed., Combustion Engineering, Windsor, CT.
Redieß, M. , Mandel, H. , and Klauke, U. , 2010, “ Effizienzsteigerung durch Retrofit an den Dampfturbinen der 500 MW-Blöcke der Vattenfall Europe Generation AG,” Flexibilitäts- und Effizienzsteigerung von Bestandskraftwerken, Spliethoff, H. , ed., VDI Wissensforum, Düsseldorf, Germany, pp. 41–54.
Linnenberg, S. , 2013, “ Optimierung der Auslegung und Untersuchung der Teillastfahrweise kohlebefeuerter Kraftwerke mit Post-Combustion CO2-Abtrennung,” Ph.D. thesis, Technische Universität Hamburg-Harburg, Hamburg, Germany.
Bejan, A. , Tsatsaronis, G. , and Moran, M. , 1996, Thermal Design and Optimization, Wiley, New York.


Grahic Jump Location
Fig. 1

Principle of a binary Rankine cycle with liquid metal as working fluid for the topping cycle, see, e.g., Ref. [1, p. 357]

Grahic Jump Location
Fig. 2

T-s diagram of a binary Rankine cycle. Topping cycle, 1-2-3-4, working fluid, e.g., potassium. Bottoming cycle, 5-6-7-8, working fluid water/steam.

Grahic Jump Location
Fig. 3

Simplified flow diagram of the simulated coal-fired binary Rankine cycle with potassium and water as working fluids

Grahic Jump Location
Fig. 4

Pressure profile of air and flue gas streams through steam generator for the system shown in Fig. 3, cp. Ref. [24, pp. 6–36]

Grahic Jump Location
Fig. 5

T–ΔH˙ diagram for selected heat exchangers, reference

Grahic Jump Location
Fig. 6

T–ΔH˙ diagram for selected heat exchangers, case 2




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In