0
Research Papers: Fuel Combustion

Products and Pathways of Aldehydes Oxidation in the Negative Temperature Coefficient Region

[+] Author and Article Information
Ghazal Barari, Batikan Koroglu

Center for Advanced Turbomachinery
and Energy Research (CATER),
Mechanical and Aerospace Engineering,
University of Central Florida,
Orlando, FL 32816

Artëm E. Masunov

NanoScience Technology Center,
Department of Chemistry,
Department of Physics,
University of Central Florida,
Orlando, FL 32816

Subith Vasu

Center for Advanced Turbomachinery
and Energy Research (CATER),
Mechanical and Aerospace Engineering,
University of Central Florida,
Orlando, FL 32816
e-mail: subith@ucf.edu

Contributed by the Advanced Energy Systems Division of ASME for publication in the JOURNAL OF ENERGY RESOURCES TECHNOLOGY. Manuscript received March 14, 2016; final manuscript received March 18, 2016; published online July 11, 2016. Editor: Hameed Metghalchi.

J. Energy Resour. Technol 139(1), 012203 (Jul 11, 2016) (9 pages) Paper No: JERT-16-1133; doi: 10.1115/1.4033589 History: Received March 14, 2016; Revised March 18, 2016

Aldehydes are major intermediates in oxidation and pyrolysis of hydrocarbons and particularly biofuels. While the high temperature oxidation chemistry of C3–C5 aldehydes have been studied in the literature, a comprehensive low temperature kinetics remains unaddressed. In this work, acetaldehyde, propanal, and 2-propenal (acrolein) oxidation was investigated at low-temperature combustion condition (500–700 K). The isomer-specific product concentrations as well as the time-resolved profiles were studied using Sandia's multiplexed photoionization mass spectroscopy (MPIMS) with synchrotron radiation from the advanced light source (ALS). The laser-pulsed photolysis generates chlorine atoms which react with aldehydes to form the parent radicals. In the presence of excess oxygen, these radicals react with O2 and form RO2 radicals. The temperature-dependent product yields are determined for 500 K to 700 K and the competition between the channels contributing to the formation of each product is discussed. In acetaldehyde oxidation, the formation of the main products is associated with HO2 elimination channel from QOOH or direct H atom elimination from the parent radicals. In propanal oxidation, the most intensive signal peak was associated with acetaldehyde (m/z = 44) which was formed through the reaction of α′-R with O2.The α′-RO2 intermediate decomposes to acetaldehyde+OH+CO via Waddington mechanism and formation of five-member ring transition state. In 2-propenal oxidation, the unsaturated radical produced from α-R reacts with O2 to form the primary products.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Ranzi, E. , Corbetta, M. , Manenti, F. , and Pierucci, S. , 2014, “ Kinetic Modeling of the Thermal Degradation and Combustion of Biomass,” Chem. Eng. Sci., 110, pp. 2–12. [CrossRef]
Barari, G. , Vasu, S. , and Sarathy, M. , 2015, “ Improved Combustion Kinetic Model and HCCI Engine Simulations of Di-Isopropyl Ketone Ignition,” Fuel, 164, pp. 141–150. [CrossRef]
Barari, G. , Koroglu, B. , Vasu, S. , Dec, J. , and Taatjes, C. , 2013, “ HCCI Engine Modeling of Diisopropyl Ketone, a Prototypical Biofuel,” Eastern States Section of the Combustion Institute (ESS/CI) Fall Technical Meeting, Clemson, SC, Oct. 13–16.
Soloiu, V. , Duggan, M. , Ochieng, H. , Williams, D. , Molina, G. , and Vlcek, B. , 2013, “ Investigation of Low Temperature Combustion Regimes of Biodiesel With N-Butanol Injected in the Intake Manifold of a Compression Ignition Engine,” ASME J. Energy Resour. Technol., 135(4), p. 041101. [CrossRef]
Yilmaz, N. , and Donaldson, A. B. , 2007, “ Modeling of Chemical Processes in a Diesel Engine With Alcohol Fuels,” ASME J. Energy Resour. Technol., 129(4), pp. 355–359. [CrossRef]
Kumar Maurya, R. , and Kumar Agarwal, A. , 2014, “ Combustion and Emission Characterization of n-Butanol Fueled HCCI Engine,” ASME J. Energy Resour. Technol., 137(1), p. 011101. [CrossRef]
Maurya, R. K. , and Agarwal, A. K. , 2014, “ Experimental Investigations of Particulate Size and Number Distribution in an Ethanol and Methanol Fueled HCCI Engine,” ASME J. Energy Resour. Technol., 137(1), p. 012201. [CrossRef]
Sarathy, S. M. , Vranckx, S. , Yasunaga, K. , Mehl, M. , Oßwald, P. , Metcalfe, W. K. , Westbrook, C. K. , Pitz, W. J. , Kohse-Höinghaus, K. , Fernandes, R. X. , and Curran, H. J. , 2012, “ A Comprehensive Chemical Kinetic Combustion Model for the Four Butanol Isomers,” Combust. Flame, 159(6), pp. 2028–2055. [CrossRef]
Mani Sarathy, S. , Park, S. , Weber, B. W. , Wang, W. , Veloo, P. S. , Davis, A. C. , Togbe, C. , Westbrook, C. K. , Park, O. , Dayma, G. , Luo, Z. , Oehlschlaeger, M. A. , Egolfopoulos, F. N. , Lu, T. , Pitz, W. J. , Sung, C.-J. , and Dagaut, P. , 2013, “ A Comprehensive Experimental and Modeling Study of Iso-Pentanol Combustion,” Combust. Flame, 160(12), pp. 2712–2728. [CrossRef]
Vasu, S. S. , and Sarathy, S. M. , 2013, “ On the High-Temperature Combustion of n-Butanol: Shock Tube Data and an Improved Kinetic Model,” Energy Fuels, 27(11), pp. 7072–7080. [CrossRef]
Heufer, K. A. , Sarathy, S. M. , Curran, H. J. , Davis, A. C. , Westbrook, C. K. , and Pitz, W. J. , 2012, “ Detailed Kinetic Modeling Study of n-Pentanol Oxidation,” Energy Fuels, 26(11), pp. 6678–6685. [CrossRef]
Pelucchi, M. , Somers, K. P. , Yasunaga, K. , Burke, U. , Frassoldati, A. , Ranzi, E. , Curran, H. J. , and Faravelli, T. , 2015, “ An Experimental and Kinetic Modeling Study of the Pyrolysis and Oxidation of n-C3C5 Aldehydes in Shock Tubes,” Combust. Flame, 162(2), pp. 265–286. [CrossRef]
Ginnebaugh, D. L. , Liang, J. , and Jacobson, M. Z. , 2010, “ Examining the Temperature Dependence of Ethanol (E85) Versus Gasoline Emissions on Air Pollution With a Largely-Explicit Chemical Mechanism,” Atmos. Environ., 44(9), pp. 1192–1199. [CrossRef]
Jacobson, M. Z. , 2007, “ Effects of Ethanol (E85) Versus Gasoline Vehicles on Cancer and Mortality in the United States,” Environ. Sci. Technol., 41(11), pp. 4150–4157. [CrossRef] [PubMed]
Jacobson, M. Z. , 2009, “ Effects of Biofuels vs. Other New Vehicle Technologies on Air Pollution, Global Warming, Land Use and Water,” Int. J. Biotechnol., 11(1–2), pp. 14–59. [CrossRef]
Nicolas, G. , and Metghalchi, H. , 2015, “ Development of the Rate-Controlled Constrained-Equilibrium Method for Modeling of Ethanol Combustion,” ASME J. Energy Resour. Technol., 138(2), p. 022205. [CrossRef]
Eiteneer, B. , Yu, C. L. , Goldenberg, M. , and Frenklach, M. , 1998, “ Determination of Rate Coefficients for Reactions of Formaldehyde Pyrolysis and Oxidation in the Gas Phase,” J. Phys. Chem. A, 102(27), pp. 5196–5205. [CrossRef]
Hidaka, Y. , Taniguchi, T. , Tanaka, H. , Kamesawa, T. , Inami, K. , and Kawano, H. , 1993, “ Shock-Tube Study of CH2O Pyrolysis and Oxidation,” Combust. Flame, 92(4), pp. 365–376. [CrossRef]
Hidaka, Y. , Taniguchi, T. , Kamesawa, T. , Masaoka, H. , Inami, K. , and Kawano, H. , 1993, “ High Temperature Pyrolysis of Formaldehyde in Shock Waves,” Int. J. Chem. Kinet., 25(4), pp. 305–322. [CrossRef]
Dean, A. M. , Johnson, R. L. , and Steiner, D. C. , 1980, “ Shock-Tube Studies of Formaldehyde Oxidation,” Combust. Flame, 37, pp. 41–62. [CrossRef]
Li, J. , Zhao, Z. , Kazakov, A. , Chaos, M. , Dryer, F. L. , and Scire, J. J. , 2007, “ A Comprehensive Kinetic Mechanism for CO, CH2O, and CH3OH Combustion,” Int. J. Chem. Kinet., 39(3), pp. 109–136. [CrossRef]
Dagaut, P. , Reuillon, M. , Voisin, D. , Cathonnet, M. , McGuinness, M. , and Simmie, J. M. , 1995, “ Acetaldehyde Oxidation in a JSR and Ignition in Shock Waves: Experimental and Comprehensive Kinetic Modeling,” Combust. Sci. Technol., 107(4–6), pp. 301–316. [CrossRef]
Yasunaga, K. , Kubo, S. , Hoshikawa, H. , Kamesawa, T. , and Hidaka, Y. , 2008, “ Shock-Tube and Modeling Study of Acetaldehyde Pyrolysis and Oxidation,” Int. J. Chem. Kinet., 40(2), pp. 73–102. [CrossRef]
Wang, S. , Davidson, D. F. , and Hanson, R. K. , 2014, “ High Temperature Measurements for the Rate Constants of C1–C4 Aldehydes With OH in a Shock Tube,” Proc. Combust. Inst., 35(1), pp. 473–480. [CrossRef]
Lifshitz, A. , Tamburu, C. , and Suslensky, A. , 1990, “ Decomposition of Propanal at Elevated Temperatures: Experimental and Modeling Study,” J. Phys. Chem., Kinet., 94(7), pp. 2966–2972. [CrossRef]
Veloo, P. S. , Dagaut, P. , Togbe, C. , Dayma, G. , Sarathy, S. M. , Westbrook, C. K. , and Egolfopoulos, F. N. , 2013, “ Jet-Stirred Reactor and Flame Studies of Propanal Oxidation,” Proc. Combust. Inst., 34(1), pp. 599–606. [CrossRef]
Kaiser, E. W. , 1983, “ A Mass-Spectrometric Study of Propionaldehyde Oxidation in the Negative Temperature Coefficient Region,” Int. J. Chem. Kinet., 15(10), pp. 997–1012. [CrossRef]
Thévenet, R. , Mellouki, A. , and Le Bras, G. , 2000, “ Kinetics of OH and Cl Reactions With a Series of Aldehydes,” Int. J. Chem. Kinet., 32(11), pp. 676–685. [CrossRef]
Chatelain, K. , Mével, R. , Menon, S. , Blanquart, G. , and Shepherd, J. E. , 2014, “ Ignition and Chemical Kinetics of Acrolein–Oxygen–Argon Mixtures Behind Reflected Shock Waves,” Fuel, 135, pp. 498–508. [CrossRef]
Dóbé, S. , Khachatryan, L. A. , and Bérces, T. , 1989, “ Kinetics of Reactions of Hydroxyl Radicals With a Series of Aliphatic Aldehydes,” Ber. Bunsen. Phys. Chem., 93(8), pp. 847–852. [CrossRef]
Sivakumaran, V. , and Crowley, J. N. , 2003, “ Reaction Between OH and CH3CHO Part 2. Temperature Dependent Rate Coefficients (201-348 K),” Phys. Chem. Chem. Phys., 5(1), pp. 106–111. [CrossRef]
Wang, S. , Davidson, D. F. , and Hanson, R. K. , 2015, “ High Temperature Measurements for the Rate Constants of C1–C4 Aldehydes With OH in a Shock Tube,” Proc. Combust. Inst., 35(1), pp. 473–480. [CrossRef]
Ji, Y. , Gao, Y. , Li, G. , and An, T. , 2012, “ Theoretical Study of the Reaction Mechanism and Kinetics of Low-Molecular-Weight Atmospheric Aldehydes (C1–C4) With NO2,” Atmos. Environ., 54, pp. 288–295. [CrossRef]
Almansour, B. , Thompson, L. , Lopez, J. , Barari, G. , and Vasu, S. S. , 2016, “ Laser Ignition and Flame Speed Measurements in Oxy-Methane Mixtures Diluted With CO2,” ASME J. Energy Resour. Technol., 138(3), p. 032201. [CrossRef]
Almansour, B. , Thompson, L. , Lopez, J. , Barari, G. , and Vasu, S. S. , “ Ignition and Flame Propagation in Oxy-Methane Mixtures Diluted With CO2,” ASME Paper No. GT2015-43355.
Koroglu, B. , Pryor, O. M. , Lopez, J. , Nash, L. , and Vasu, S. S. , 2016, “ Shock Tube Ignition Delay Times and Methane Time-Histories Measurements During Excess CO2 Diluted Oxy-Methane Combustion,” Combust. Flame, 164, pp. 152–163. [CrossRef]
Zádor, J. , Taatjes, C. A. , and Fernandes, R. X. , 2011, “ Kinetics of Elementary Reactions in Low-Temperature Autoignition Chemistry,” Prog. Energy Combust. Sci., 37(4), pp. 371–421. [CrossRef]
Miller, J. A. , Pilling, M. J. , and Troe, J. , 2005, Proc. Combust. Inst., 30(1), p. 43. [CrossRef]
Vranckx, S. , Heufer, K. A. , Lee, C. , Olivier, H. , Schill, L. , Kopp, W. A. , Leonhard, K. , Taatjes, C. A. , and Fernandes, R. X. , 2011, “ Role of Peroxy Chemistry in the High-Pressure Ignition of n-Butanol—Experiments and Detailed Kinetic Modelling,” Combust. Flame, 158(8), pp. 1444–1455. [CrossRef]
Taatjes, C. A. , Hansen, N. , Osborn, D. L. , Kohse-Hoeinghaus, K. , Cool, T. A. , and Westmoreland, P. R. , 2008, ““ Imaging” Combustion Chemistry Via Multiplexed Synchrotron-Photoionization Mass Spectrometry,” Phys. Chem. Chem. Phys., 10(1), pp. 20–34. [CrossRef] [PubMed]
Welz, O. , Savee, J. D. , Osborn, D. L. , Vasu, S. S. , Percival, C. J. , Shallcross, D. E. , and Taatjes, C. A. , 2012, “ Direct Kinetic Measurements of Criegee Intermediate (CH2OO) Formed by Reaction of CH2I With O2,” Science, 335(6065), pp. 204–207. [CrossRef] [PubMed]
Scheer, A. M. , Welz, O. , Sasaki, D. Y. , Osborn, D. L. , and Taatjes, C. A. , 2013, “ Facile Rearrangement of 3-Oxoalkyl Radicals is Evident in Low-Temperature Gas-Phase Oxidation of Ketones,” J. Am. Chem. Soc., 135(38), pp. 14256–14265. [CrossRef] [PubMed]
Welz, O. , Klippenstein, S. J. , Harding, L. B. , Taatjes, C. A. , and Zador, J. , 2013, “ Unconventional Peroxy Chemistry in Alcohol Oxidation: The Water Elimination Pathway,” J. Phys. Chem. Lett., 4(3), pp. 350–354. [CrossRef] [PubMed]
Welz, O. , Zádor, J. , Savee, J. D. , Ng, M. Y. , Meloni, G. , Fernandes, R. X. , Sheps, L. , Simmons, B. A. , Lee, T. S. , Osborn, D. L. , and Taatjes, C. A. , 2012, “ Low-Temperature Combustion Chemistry of Biofuels: Pathways in the Initial Low-Temperature (550 K–750 K) Oxidation Chemistry of Isopentanol,” Phys. Chem. Chem. Phys., 14(9), pp. 3112–3127. [CrossRef] [PubMed]
Taatjes, C. A. , Miller, J. A. , Zádor, J. , Fernandes, R. X. , and Jusinski, L. E. , 2009, “ Advanced Fuel Chemistry for Advanced Engines,” Sandia National Laboratories, Livermore, CA, Report No. SAND2009-6051.
Welz, O. , Savee, J. D. , Eskola, A. J. , Sheps, L. , Osborn, D. L. , and Taatjes, C. A. , 2013, “ Low-Temperature Combustion Chemistry of Biofuels: Pathways in the Low-Temperature (550–700K) Oxidation Chemistry of Isobutanol and Tert-Butanol,” Proc. Combust. Inst., 34(1), pp. 493–500. [CrossRef]
Osborn, D. L. , Zou, P. , Johnsen, H. , Hayden, C. C. , Taatjes, C. A. , Knyazev, V. D. , North, S. W. , Peterka, D. S. , Ahmed, M. , and Leone, S. R. , 2008, “ The Multiplexed Chemical Kinetic Photoionization Mass Spectrometer: A New Approach to Isomer-Resolved Chemical Kinetics,” Rev. Sci. Instrum., 79(10), p. 104103.
Savee, J. D. , Soorkia, S. , Welz, O. , Selby, T. M. , Taatjes, C. A. , and Osborn, D. L. , 2012, “ Absolute Photoionization Cross-Section of the Propargyl Radical,” J. Chem. Phys., 136(13), p. 134307. [CrossRef] [PubMed]
Eskola, A. J. , Welz, O. , Savee, J. D. , Osborn, D. L. , and Taatjes, C. A. , 2013, “ Synchrotron Photoionization Measurements of Fundamental Autoignition Reactions: Product Formation in Low-Temperature Isobutane Oxidation,” Proc. Combust. Inst., 34(1), pp. 385–392. [CrossRef]
NIST, 2011, “ NIST Chemical Kinetic Database,” National Institute of Standards and Technology (NIST), Gaithersburg, MD.
Kaiser, E. , Westbrook, C. , and Pitz, W. , 1986, “ Acetaldehyde Oxidation in the Negative Temperature Coefficient Regime: Experimental and Modeling Results,” Int. J. Chem. Kinet., 18(6), pp. 655–688. [CrossRef]
Meloni, G. , Zou, P. , Klippenstein, S. J. , Ahmed, M. , Leone, S. R. , Taatjes, C. A. , and Osborn, D. L. , 2006, “ Energy-Resolved Photoionization of Alkylperoxy Radicals and the Stability of Their Cations,” J. Am. Chem. Soc., 128(41), pp. 13559–13567. [CrossRef] [PubMed]
Cord, M. , Husson, B. , Huerta, J. C. L. , Herbinet, O. , Glaude, P.-A. , Fournet, R. , Sirjean, B. , Battin-Leclerc, F. , Ruiz-Lopez, M. , Wang, Z. , Xie, M. , Cheng, Z. , and Qi, F. , 2012, “ Study of the Low Temperature Oxidation of Propane,” J. Phys. Chem. A, 116(50), pp. 12214–12228. [CrossRef] [PubMed]
Rosman, K. , and Taylor, P. , 1998, “ Isotopic Compositions of the Elements 1997,” J. Phys. Chem. Ref. Data, 27(6), pp. 1275–1287. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Integrated difference mass spectra for Cl-initiated oxidation of acetaldehyde at 550 K and 700 K, integrated over the photon energy 9.5–11.5 eV and kinetic times until 25 ms after the laser photolysis

Grahic Jump Location
Fig. 2

Primary products photoionization spectra of acetaldehyde Cl-initiated oxidation at 550 and 700 K compared to the corresponding standard PIE

Grahic Jump Location
Fig. 3

The scaled time profiles of m/z = 30 (formaldehyde), 42 (ketene), 47 (methylperoxy), and 60 compared to the inverted depletion rate of parent fuel, m/z = 44 (acetaldehyde) in Cl-initiated oxidation of acetaldehyde at 700 K

Grahic Jump Location
Fig. 4

The scaled time profiles of m/z = 30 (formaldehyde), 42 (ketene), 47 (methylperoxy), and 60 in Cl-initiated oxidation of acetaldehyde at 550 K

Grahic Jump Location
Fig. 5

Temperature-dependent time profiles of the products in Cl-initiated oxidation of acetaldehyde

Grahic Jump Location
Fig. 6

Integrated difference mass spectra for Cl-initiated oxidation of Propanal at 550 K and 700 K, obtained by integration over the photon energy 9.5–11.5 eV and the kinetic times until 25 ms after the laser photolysis

Grahic Jump Location
Fig. 7

Primary products photoionization spectra of propanal Cl-initiated oxidation at 550 and 700 K compared to the corresponding standard PIE

Grahic Jump Location
Fig. 8

Temperature-dependent time profiles of the products in Cl-initiated oxidation of propanal

Grahic Jump Location
Fig. 9

Integrated difference mass spectra for Cl-initiated oxidation of 2-propenal at 550 K obtained by integration over the photon energy 9.5–11.5 eV and the kinetic times until 25 ms after the laser photolysis

Grahic Jump Location
Fig. 10

Primary products photoionization spectra of 2-propenal Cl-initiated oxidation at 550 compared to the corresponding standard PIE

Grahic Jump Location
Fig. 11

Comparison of the photoionization spectra of the peak at m/z = 44 with the corresponding standard PIE of ethenol and acetaldehyde, along with the data fit, in 2-propenal Cl-initiated oxidation at 550

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In