0
Research Papers: Fuel Combustion

Measurements of Laminar Flame Speeds of Gas-to-Liquid-Diesel Fuel Blends

[+] Author and Article Information
Samahat Samim, Abdellatif M. Sadeq

Thermofluids Group,
Mechanical and Industrial
Engineering Department,
College of Engineering,
Qatar University,
P.O. Box 2713,
Doha 2713, Qatar
e-mail: a.mohamed@qu.edu.qa

Samer F. Ahmed

Thermofluids Group,
Mechanical and Industrial
Engineering Department,
College of Engineering,
Qatar University,
P.O. Box 2713,
Doha 2713, Qatar
e-mail: sahmed@qu.edu.qa

1Corresponding author.

Contributed by the Advanced Energy Systems Division of ASME for publication in the JOURNAL OF ENERGY RESOURCES TECHNOLOGY. Manuscript received April 10, 2016; final manuscript received May 8, 2016; published online June 14, 2016. Editor: Hameed Metghalchi.

J. Energy Resour. Technol 138(5), 052213 (Jun 14, 2016) (8 pages) Paper No: JERT-16-1166; doi: 10.1115/1.4033627 History: Received April 10, 2016; Revised May 08, 2016

This work investigates the laminar flame speed, SN, of gas-to-liquid (GTL) fuel and its 50–50% by volume blends with conventional diesel, in a cylindrical bomb capable of measuring SN at different initial temperatures and equivalence ratios at ambient pressure. SN was measured by analysing the pressure signals after combustion detected by a pressure transducer mounted on the bomb. Direct visualization has also been conducted to observe the ignition and flame propagation. It was found that pure GTL fuel has the highest SN near stoichiometric conditions, which is about 88.3 cm/s. However, at lean and rich mixtures, SN of GTL is slightly lower than that of the conventional diesel. The blended fuel has the lowest SN at lean and rich mixture conditions comparing with those of GTL and diesel fuels. Studying the effect of increasing the initial temperature on SN revealed that SN of the three tested fuels increases with the increase in the initial temperature almost linearly. However, the blended fuel has the lowest SN at the highest temperature, about 89.7 cm/s at 250 °C.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Radhi, H. , 2009, “ Evaluating the Potential Impact of Global Warming on the UAE Residential Buildings - A Contribution to Reduce the CO2 Emissions,” Build. Environ., 44(12), pp. 2451–2462. [CrossRef]
Oil and Gas IQ, 2012, “ Gas to Liquids—6 Ground-Breaking GTL Megaprojects,” Gas-to-Liquids Conference, London, UK, Oct. 4–5.
Alleman, T. L. , and McCormick, R. L. , 2003, “ Fischer–Tropsch Diesel Fuels–Properties and Exhaust Emissions: A Literature Review,” SAE Paper No. 2003-01-0763.
Schaberg, P. W. , Botha, J. , Schnell, M. , Herrmann, H. O. , Keppeler, S. , and Friess, W. , 2007, “ HSDI Diesel Engine Optimisation for GTL Diesel Fuel,” SAE Paper No. 2007-01-0027.
Szybist, J. P. , Kirby, S. R. , and Boehman, A. L. , 2005, “ NOx Emissions of Alternative Diesel Fuels: A Comparative Analysis of Biodiesel and FT Diesel,” Energy Fuels, 19(4), pp. 1484–1492. [CrossRef]
Sajjad, H. , Masjuki, H. H. , Varman, M. , Kalam, M. A. , Arbab, M. I. , Imtenan, S. , and Ashrafur Rahman, S. M. , 2014, “ Engine Combustion, Performance and Emission Characteristics of Gas-to-Liquid (GTL) Fuels and Its Blends With Diesel and Bio-Diesel,” Renewable Sustainable Energy Rev., 30, pp. 961–986. [CrossRef]
Andrews, G. , and Bradley, D. , 1972, Determination of Burning Velocities: A Critical Review, Combust. Flame, 18(1), pp. 133–153. [CrossRef]
Romero, D. , Parthasarathy, R. N. , and Gollahalli, S. R. , 2014, “ Laminar Flame Characteristics of Partially Premixed Prevaporized Palm Methyl Ester and Diesel Flames,” ASME J. Energy Resour. Technol., 136(3), p. 032204.
Dam, B. , Ardha, V. , and Choudhuri, A. , 2010, “ Laminar Flame Velocity of Syngas Fuels,” ASME J. Energy Resour. Technol., 132(4), p. 044501. [CrossRef]
Almansour, B. , Thompson, L. , Lopez, J. , Barari, G. , and Vasu, S. S. , 2016, “ Laser Ignition and Flame Speed Measurements in Oxy-Methane Mixtures Diluted With CO2,” ASME J. Energy Resour. Technol., 138(3), p. 032201. [CrossRef]
Rokni, E. , Moghaddas, A. , Askari, O. , and Metghalchi, H. , 2015, “ Measurement of Laminar Burning Speeds and Investigation of Flame Stability of Acetylene (C2H2)/Air Mixtures,” ASME J. Energy Resour. Technol., 137(1), p. 012204. [CrossRef]
Moghaddas, A. , Bennett, C. , Eisazadeh-Far, K. , and Metghalchi, H. , 2012, “ Measurement of Laminar Burning Speeds and Determination of Onset of Auto-Ignition of Jet-A/Air and Jet Propellant-8/Air Mixtures in a Constant Volume Spherical Chamber,” ASME J. Energy Resour. Technol., 134(2), p. 022205. [CrossRef]
Moghaddas, A. , Eisazadeh-Far, K. , and Metghalchi, H. , 2012, “ Laminar Burning Speed Measurement of Premixed n-Decane/Air Mixtures Using Spherically Expanding Flames at High Temperatures and Pressures,” Combust. Flame, 159(4), pp. 1437–1443. [CrossRef]
Eisazadeh-Far, K. , Moghaddas, A. , Al-Mulki, J. , and Metghalchi, H. , 2011, “ Laminar Burning Speeds of Ethanol/Air/Diluent Mixtures,” Proc. Combust. Inst., 33(1), pp. 1021–1027. [CrossRef]
Parsinejad, F. , Arcari, C. , and Merghalchi, H. , 2006, “ Flame Structure and Burning Speed of JP-10 Air Mixtures,” Combust. Sci. Technol., 178(5), pp. 975–1000. [CrossRef]
Elia, M. , Ulinski, M. , and Metghalchi, M. , 2001, “ Laminar Burning Velocity of Methane-Air-Diluent Mixtures,” ASME J. Eng. Gas Turbines Power, 123(1), pp. 190–196. [CrossRef]
Rahim, F. , Elia, M. , Ulinski, M. , and Metghalchi, M. , 2002, “ Burning Velocity Measurements of Methane–Oxygen–Argon Mixtures and an Application to Extend Methane-Air Burning Velocity Measurements,” Int. J. Engine Res., 3(2), pp. 81–92. [CrossRef]
Parsinejad, F. , Arcari, C. , and Metghalchi, H. , 2006, “ Flame Structure and Burning Speed of JP-10 Air Mixtures,” Combust. Sci. Technol., 178(5), pp. 975–1000. [CrossRef]
Parsinejad, F. , Keck, J. C. , and Metghalchi, H. , 2007, “ On the Location of Flame Edge in Shadowgraph Pictures of Spherical Flames; Experimental and Theoretical Study,” Exp. Fluids, 43(6), pp. 887–894. [CrossRef]
Eisazadeh-Far, K. , Parsinejad, F. , and Metghalchi, H. , 2010, “ Flame Structure and Laminar Burning Speeds of JP-8/Air Premixed Mixtures at High Temperatures and Pressures,” Fuel, 89(5), pp. 1041–1049. [CrossRef]
Eisazadeh-Far, K. , Parsinejad, F. , Metghalchi, H. , and Keck, J. C. , 2010, “ On Flame Kernel Formation and Propagation in Premixed Gases,” Combust. Flame, 157(12), pp. 2211–2221. [CrossRef]
Eisazadeh-Far, K. , Moghaddas, A. , Rahim, F. , and Metghalchi, H. , 2010, “ Burning Speed and Entropy Production Calculation of a Transient Expanding Spherical Laminar Flame Using a Thermodynamic Model,” Entropy, 12(12), pp. 2485–2496. [CrossRef]
Eisazadeh-Far, K. , Moghaddas, A. , Metghalchi, H. , and Keck, J. C. , 2011, “ The Effect of Diluent on Flame Structure and Laminar Burning Speed of JP-8/Oxidizer/Diluent Premixed Flames,” Fuel, 90(4), pp. 1476–1486. [CrossRef]
Bradley, D. , and Mitcheson, A. , 1976, “ Mathematical Solutions for Explosions in Spherical Vessels,” Combust. Flame, 26, pp. 201–217. [CrossRef]
Dahoe, A. , Zevenbergen, J. , Lemkowitz, S. , and Scarlett, B. , 1996, “ Dust Explosion in Spherical Vessels: The Role of Flame Thickness in the Validity of the Cube-Root Law,” J. Loss Prevent Process Ind., 9(1), pp. 33–44. [CrossRef]
Rallis, C. , Garforth, A. , and Steinz, J. , 1965, “ Laminar Burning Velocity of Acetylene–Air Mixtures by the Constant Volume Method: Dependence on Mixture Composition, Pressure and Temperature,” Combust. Flame, 9(4), pp. 354–356. [CrossRef]
Babkin, V. , and Kononenko, Y. , 1967, “ Equations for Determining Normal Flame Velocity in a Constant-Volume Spherical Bomb,” Combust. Flame, 3(2), pp. 168–171.
Metghalchi, M. , and Keck, J. , 1982, “ Burning Velocities of Mixtures of Air With Methanol, Isooctane, and Indolene at High Pressure and Temperature,” Combust. Flame, 48, pp. 191–210. [CrossRef]
Metghalchi, M. , and Keck, J. C. , 1980, “ Laminar Burning Velocity of Propane-Air Mixtures at High Temperature and Pressure,” Combust. Flame, 38, pp. 143–154. [CrossRef]
Rahim, F. , Eisazadeh Far, K. , Parsinejad, F. , Adrews, R. J. , and Metghalchi, H. , 2008, “ A Thermodynamic Model to Calculate Burning Speed of Methane-Air- Diluent Mixtures,” Int. J. Thermodyn., 11(4), pp. 151–160.
Eisazadeh-Far, K. , Metghalchi, H. , and Keck, J. C. , 2011, “ Thermodynamic Properties of Ionized Gases at High Temperatures,” ASME J. Energy Resour. Technol., 133(2), p. 022201.
Askari, O. , Moghaddas, A. , Alholm, A. , Vein, K. , Alhazmi, B. , and Metghalchi, H. , 2016, “ Laminar Burning Speed Measurement and Flame Instability Study of H2/CO/Air Mixtures at High Temperatures and Pressures Using a Novel Multi- Shell Model,” Combust. Flames, 168, pp. 20–31. [CrossRef]
Lewis, B. , and Von Elbe, G. , 1987, Combustion, Flames and Explosions of Gases, 3rd ed., Academic Press, Orlando, FL.
Radwan, M. , Ismail, M. , Elfeky, S. , and Abu-Elyazeed, O. , 2006, “ Jojoba Methyl Ester as a Diesel Fuel Substitute: Preparation and Characterization,” Appl. Therm. Eng., 27(2–3), pp. 314–322. [CrossRef]
Huzayyin, A. , Moneib, H. , Shehatta, M. , and Attia, A. , 2008, “ Laminar Burning Velocity and Explosion Index of LPG–Air and Propane–Air Mixtures,” Fuel, 87(1), pp. 39–57. [CrossRef]
Bradley, D. , Lawes, M. , and Mansour, M. , 2009, “ Explosion Bomb Measurements of Ethanol–Air Laminar Gaseous Flame Characteristics at Pressures up to 1.4 MPa,” Combust. Flame, 156(7), pp. 1462–1470. [CrossRef]
Bradley, D. , Hicks, R. A. , Lawes, M. , Sheppard, C. G. W. , and Woolley, R. , 1998, “ The Measurement of Laminar Burning Velocities and Markstein Numbers for Iso-Octane–Air and Iso-Octane–n-Heptane–Air Mixtures at Elevated Temperatures and Pressures in an Explosion Bomb,” Combust. Flame, 115(2), pp. 126–144. [CrossRef]
Ibrahim, A. S. , and Ahmed, S. F. , 2015, “ Measurements of Laminar Flame Speeds of Alternative Gaseous Fuel Mixtures,” ASME J. Energy Resour. Technol., 137(3), p. 032209. [CrossRef]
Askari, O. , Metghalchi, H. , Hannani, S. K. , Moghaddas, A. , Ebrahimi, R. , and Hemmati, H. , 2012, “ Fundamental Study of Spray and Partially Premixed Combustion of Methane/Air Mixture,” ASME J. Energy Resour. Technol., 135(2), p. 021001. [CrossRef]
Askari, O. , Metghalchi, H. , Hannani, S. K. , Hemmati, H. , and Ebrahimi, R. , 2014, “ Lean Partially Premixed Combustion Investigation of Methane Direct-Injection Under Different Characteristic Parameters,” ASME J. Energy Resour. Technol., 136(2), p. 022202. [CrossRef]
Chong, C. T. , and Hochgreb, S. , 2011, “ Measurements of Laminar Flame Speeds of Liquid Fuels: Jet-A1, Diesel, Palm Methyl Esters and Blends Using Particle Imaging Velocimetry (PIV),” Proc. Combust. Inst., 33(1), pp. 979–986. [CrossRef]
Ahmed, S. F. , 2014, “ The Probabilistic Nature of Ignition in Turbulent Highly-Strained Lean Premixed Methane-Air Flames for Low-Emission Engines,” Fuel, 134, pp. 97–106. [CrossRef]
Li, B. , Liu, N. , Zhao, R. , Zhang, H. , and Egolfopoulos, F. N. , 2013, “ Flame Propagation of Mixtures of Air With High Molecular Weight Neat Hydrocarbons and Practical Jet and Diesel Fuels,” Proc. Combust. Inst., 34(1), pp. 727–733. [CrossRef]
Chen, Z. , Burke, M. P. , and Ju, Y. , 2009, “ Effects of Compression and Stretch on the Determination of Laminar Flame Speeds Using Propagating Spherical Flames,” Combust. Theory Modell., 13(2), pp. 343–364. [CrossRef]
Davis, S. G. , and Law, C. K. , 1998, “ Determination of and Fuel Structure Effects on Laminar Flame Speeds of C1 to C8 Hydrocarbons,” Combust. Sci. Technol., 140(1), pp. 427–449. [CrossRef]
Davis, S. G. , Wang, H. , Breinsky, K. , and Law, C. K. , 1996, “ Laminar Flame Speeds and Oxidation Kinetics of Benzene–Air and Toluene–Air Flames,” Proc. Combust. Inst., 26(1), pp. 1025–1033. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Schematic diagram of the cylindrical bomb test rig

Grahic Jump Location
Fig. 2

Temperature profile inside the bomb versus time

Grahic Jump Location
Fig. 3

Visualization of ignition and flame propagation of GTL fuel–air mixture at ϕ = 1 and Ti = 180 °C. Time difference between images is 33 ms.

Grahic Jump Location
Fig. 4

Smooth pressure raise signal versus time of diesel ignition at Ti = 190 °C and ϕ = 1

Grahic Jump Location
Fig. 5

A comparison of SN of a diesel fuel between the present work and those of Ref. [41] at Ti = 190 °C and Pi = 1 atm

Grahic Jump Location
Fig. 6

SN of GTL, conventional diesel, and 50–50 blend as a function of ϕ. Ti = 190 °C. Dashed lines show polynomial fits of these curves.

Grahic Jump Location
Fig. 7

Effect of changing the initial temperature on the SN of GTL, diesel and 50–50 blend at ϕ = 1.0

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In