0
Research Papers: Fuel Combustion

Theoretical Prediction of Laminar Burning Speed and Ignition Delay Time of Gas-to-Liquid Fuel

[+] Author and Article Information
Guangying Yu, Fatemeh Hadi, Ziyu Wang, Hameed Metghalchi

Mechanical and Industrial
Engineering Department,
Northeastern University,
Boston, MA 02115

Omid Askari

Mechanical Engineering Department,
Mississippi State University,
Starkville, MS 39762

Kumaran Kannaiyan, Reza Sadr

Mechanical Engineering Department,
Texas A&M University at Qatar,
P.O. Box 23874,
Doha, Qatar

Contributed by the Advanced Energy Systems Division of ASME for publication in the JOURNAL OF ENERGY RESOURCES TECHNOLOGY. Manuscript received June 8, 2016; final manuscript received June 14, 2016; published online July 12, 2016. Assoc. Editor: Arash Dahi Taleghani.

J. Energy Resour. Technol 139(2), 022202 (Jul 12, 2016) (6 pages) Paper No: JERT-16-1242; doi: 10.1115/1.4033984 History: Received June 08, 2016; Revised June 14, 2016

Gas-to-liquid (GTL), an alternative synthetic jet fuel derived from natural gas through Fischer–Tropsch (F–T) process, has gained significant attention due to its cleaner combustion characteristics when compared to conventional counterparts. The effect of chemical composition on key performance aspects such as ignition delay, laminar burning speed, and emission characteristics has been experimentally studied. However, the development of chemical mechanism to predict those parameters for GTL fuel is still in its early stage. The GTL aviation fuel from Syntroleum Corporation, S-8, is used in this study. For theoretical predictions, a mixture of 32% iso-octane, 25% n-decane, and 43% n-dodecane by volume is considered as the surrogate for S-8 fuel. In this work, a detailed kinetics model (DKM) has been developed based on the chemical mechanisms reported for the GTL fuel. The DKM is employed in a constant internal energy and constant volume reactor to predict the ignition delay times for GTL over a wide range of temperatures, pressures, and equivalence ratios. The ignition delay times predicted using DKM are validated with those reported in the literature. Furthermore, the steady one-dimensional premixed flame code from CANTERA is used in conjunction with the chemical mechanisms to predict the laminar burning speeds for GTL fuel over a wide range of operating conditions. Comparison of ignition delay and laminar burning speed shows that the Ranzi et al. mechanism has a better agreement with the available experimental data, and therefore is used for further evaluation in this study.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Bao, B. , El-Halwagi, M. M. , and Elbashir, N. O. , 2010, “ Simulation, Integration, and Economic Analysis of Gas-to-Liquid Processes,” Fuel Process. Technol., 91(7), pp. 703–713. [CrossRef]
Abdel-Kreem, M. , Bassyouni, M. , Abdel-Hamid, S. M.-S. , and Abdel-Aal, H. , 2009, “ The Role of GTL Technology as an Option to Exploit Natural Gas Resources,” Open Fuel Cells J., 2(1), pp. 5–10. [CrossRef]
Askari, O. , Metghalchi, H. , Kazemzadeh Hannani, S. , Moghaddas, A. , Ebrahimi, R. , and Hemmati, H. , 2012, “ Fundamental Study of Spray and Partially Premixed Combustion of Methane/Air Mixture,” ASME J. Energy Resour. Technol., 135(2), p. 021001. [CrossRef]
Askari, O. , Metghalchi, H. , Kazemzadeh Hannani, S. , Hemmati, H. , and Ebrahimi, R. , 2014, “ Lean Partially Premixed Combustion Investigation of Methane Direct-Injection Under Different Characteristic Parameters,” ASME J. Energy Resour. Technol., 136(2), p. 022202. [CrossRef]
Askari, O. , Hannani, S. K. , and Ebrahimi, R. , 2012, “ Improvement and Experimental Validation of a Multi-Zone Model for Combustion and NO Emissions in CNG Fueled Spark Ignition Engine,” J. Mech. Sci. Technol., 26(4), pp. 1205–1212. [CrossRef]
Askari, O. , Beretta, G. P. , Eisazadeh-Far, K. , and Metghalchi, H. , 2016, “ On the Thermodynamic Properties of Thermal Plasma in the Flame Kernel of Hydrocarbon/Air Premixed Gases,” Eur. Phys. J. D (in press).
Hobbs, H. O. J. , and Adair, L. S. , 2012, “ Gas-to-Liquids Plants Offer Great ROI,” The American Oil & Gas Reporter, Haysville, KS.
Udaeta, M. E. M. , Burani, G. F. , Arzabe Maure, J. O. , and Oliva, C. R. , 2007, “ Economics of Secondary Energy From GTL Regarding Natural Gas Reserves of Bolivia,” Energy Policy, 35(8), pp. 4095–4106. [CrossRef]
Economides, M. , 2005, “ The Economics of Gas to Liquids Compared to Liquefied Natural Gas,” World Energy, 8(1), pp. 136–140.
Moon, G. , Lee, Y. , Choi, K. , and Jeong, D. , 2010, “ Emission Characteristics of Diesel, Gas to Liquid, and Biodiesel-Blended Fuels in a Diesel Engine for Passenger Cars,” Fuel, 89(12), pp. 3840–3846. [CrossRef]
Hassaneen, A. , Munack, A. , Ruschel, Y. , Schroeder, O. , and Krahl, J. , 2012, “ Fuel Economy and Emission Characteristics of Gas-to-Liquid (GTL) and Rapeseed Methyl Ester (RME) as Alternative Fuels for Diesel Engines,” Fuel, 97, pp. 125–130. [CrossRef]
Abu-Jrai, A. , Rodríguez-Fernández, J. , Tsolakis, A. , Megaritis, A. , Theinnoi, K. , Cracknell, R. F. , and Clark, R. H. , 2009, “ Performance, Combustion and Emissions of a Diesel Engine Operated With Reformed EGR. Comparison of Diesel and GTL Fuelling,” Fuel, 88(6), pp. 1031–1041. [CrossRef]
Li, X. , Huang, Z. , Wang, J. , and Zhang, W. , 2007, “ Particle Size Distribution From a GTL Engine,” Sci. Total Environ., 382(2–3), pp. 295–303. [PubMed]
Alleman, T. L. , Eudy, L. , Miyasato, M. , Oshinuga, A. , Allison, S. , Corcoran, T. , Chatterjee, S. , Jacobs, T. , Matthey, J. , Cherrillo, R. A. , Clark, R. , Virrels, I. , Nine, R. , Wayne, S. , and Lansing, R. , 2004, “ Fuel Property, Emission Test, and Operability Results From a Fleet of Class 6 Vehicles Operating on Gas-to-Liquid Fuel and Catalyzed Diesel Particle Filters South Coast Air Quality Management District,” SAE Technical Paper No. 2004-01-2959.
Alleman, T. L. , Tennant, C. J. , Hayes, R. R. , Barton, G. , Rumminger, M. , Duggal, V. , Nelson, C. , May, M. , and Cherrillo, R. A. , 2005, “ Achievement of Low Emissions by Engine Modification to Utilize Gas-to-Liquid Fuel and Advanced Emission Controls on a Class 8 Truck,” SAE Technical Paper No. 2005-01-3766.
Alleman, T. L. , Barnitt, R. , Eudy, L. , Corcoran, T. , Cherrillo, R. A. , Clark, N. , and Wayne, W. S. , 2005, “ Final Operability and Chassis Emissions Results from a Fleet of Class 6 Trucks Operating on Gas-to-Liquid Fuel and Catalyzed Diesel Particle Filters,” SAE Technical Paper No. 2005-01-3769.
Mancaruso, E. , and Vaglieco, B. M. , 2012, “ Premixed Combustion of GTL and RME Fuels in a Single Cylinder Research Engine,” Appl. Energy, 91(1), pp. 385–394. [CrossRef]
Hajialimohammadi, A. , Ahmadisoleymani, S. , Abdullah, A. , Askari, O. , and Rezai, F. , 2012, “ Design and Manufacturing of a Constant Volume Test Combustion Chamber for Jet and Flame Visualization of CNG Direct Injection,” Appl. Mech. Mater., 217–219, pp. 2539–2545. [CrossRef]
Kahandawala, M. S. P. , DeWitt, M. J. , Corporan, E. , and Sidhu, S. S. , 2008, “ Ignition and Emission Characteristics of Surrogate and Practical Jet Fuels,” Energy Fuels, 22(6), pp. 3673–3679. [CrossRef]
Balagurunathan, J. , Flora, G. , Saxena, S. , Kahandawala, M. , DeWitt, M. , Sidhu, S. , and Corporan, E. , 2011, “ Ignition Delay Times of a Range of Alternate Jet Fuels and Surrogate Fuel Candidate Hydrocarbons Under Fuel-Lean Conditions: A Shock Tube Study,” AIAA Paper No. 2011-696.
Kumar, K. , and Sung, C. J. , 2010, “ A Comparative Experimental Study of the Autoignition Characteristics of Alternative and Conventional Jet Fuel/Oxidizer Mixtures,” Fuel, 89(10), pp. 2853–2863. [CrossRef]
Kumar, K. , Sung, C. J. , and Hui, X. , 2011, “ Laminar Flame Speeds and Extinction Limits of Conventional and Alternative Jet Fuels,” Fuel, 90(3), pp. 1004–1011. [CrossRef]
Wang, H. , and Oehlschlaeger, M. A. , 2012, “ Autoignition Studies of Conventional and Fischer-Tropsch Jet Fuels,” Fuel, 98, pp. 249–258. [CrossRef]
Kannaiyan, K. , and Sadr, R. , 2014, “ Experimental Investigation of Spray Characteristics of Alternative Aviation Fuels,” Energy Convers. Manage., 88, pp. 1060–1069. [CrossRef]
Fyffe, D. , Moran, J. , Kannaiyan, K. , Sadr, R. , and Al-Sharshani, A. , 2011, “ Effect of GTL-Like Jet Fuel Composition on GT Engine Altitude Ignition Performance: Part I—Combustor Operability,” ASME Paper No. GT2011-45487.
Mosbach, T. , Gebel, G. C. , Le Clercq, P. , Sadr, R. , Kannaiyan, K. , and Al-Sharshani, A. , 2011, “ Investigation of GTL-Like Jet Fuel Composition on GT Engine Altitude Ignition and Combustion Performance: Part II—Detailed Diagnostics,” ASME Paper No. GT2011-45510.
Kick, T. , Herbst, J. , Kathrotia, T. , Marquetand, J. , Braun-Unkhoff, M. , Naumann, C. , and Riedel, U. , 2012, “ An Experimental and Modeling Study of Burning Velocities of Possible Future Synthetic Jet Fuels,” Energy, 43(1), pp. 111–123. [CrossRef]
Hui, X. , Kumar, K. , Sung, C. J. , Edwards, T. , and Gardner, D. , 2012, “ Experimental Studies on the Combustion Characteristics of Alternative Jet Fuels,” Fuel, 98, pp. 176–182. [CrossRef]
Vukadinovic, V. , Habisreuther, P. , and Zarzalis, N. , 2012, “ Experimental Study on Combustion Characteristics of Conventional and Alternative Liquid Fuels,” ASME J. Eng. Gas Turbines Power, 134(12), p. 121504. [CrossRef]
Ji, C. , Wang, Y. L. , and Egolfopoulos, F. N. , 2011, “ Flame Studies of Conventional and Alternative Jet Fuels,” J. Propul. Power, 27(4), pp. 856–863. [CrossRef]
Singh, D. , Nishiie, T. , and Qiao, L. , 2010, “ Laminar Burning Speeds and Markstein Lengths of n-Decane/Air, n-Decane/O2/He, Jet-A/Air and S-8/Air Flames,” AIAA Paper No. 2010-951.
Huber, M. L. , Smith, B. L. , Ott, L. S. , and Bruno, T. J. , 2008, “ Surrogate Mixture Model for the Thermophysical Properties of Synthetic Aviation Fuel S-8: Explicit Application of the Advanced Distillation Curve,” Energy Fuels, 22(2), pp. 1104–1114. [CrossRef]
Naik, C. V. , Puduppakkam, K. V. , Modak, A. , Meeks, E. , Wang, Y. L. , Feng, Q. , and Tsotsis, T. T. , 2011, “ Detailed Chemical Kinetic Mechanism for Surrogates of Alternative Jet Fuels,” Combust. Flame, 158(3), pp. 434–445. [CrossRef]
Dooley, S. , Won, S. H. , Jahangirian, S. , Ju, Y. , Dryer, F. L. , Wang, H. , and Oehlschlaeger, M. A. , 2012, “ The Combustion Kinetics of a Synthetic Paraffinic Jet Aviation Fuel and a Fundamentally Formulated, Experimentally Validated Surrogate Fuel,” Combust. Flame, 159(10), pp. 3014–3020. [CrossRef]
Slavinskaya, N. , Riedel, U. , Saibov, E. , Herzler, J. , and Naumann, C. , 2014, “ Kinetic Surrogate Model for GTL Kerosene,” AIAA Paper No. 2014-0126.
Yu, J. , Wang, Z. , Wang, W. , and Gou, X. , 2016, “ Surrogate Definition and Chemical Kinetic Modeling for Fischer-Tropsch Fuels,” Energy Fuels, 30(2), pp. 1375–1382.
Dagaut, P. , Karsenty, F. , Dayma, G. , Diévart, P. , Hadj-Ali, K. , Mzé-Ahmed, A. , Braun-Unkhoff, M. , Herzler, J. , Kathrotia, T. , Kick, T. , Naumann, C. , Riedel, U. , and Thomas, L. , 2014, “ Experimental and Detailed Kinetic Model for the Oxidation of a Gas to Liquid (GtL) Jet Fuel,” Combust. Flame, 161(3), pp. 835–847. [CrossRef]
Dagaut, P. , Dayma, G. , Diévart, P. , Hadj-Ali, K. , and Mzé-Ahmed, A. , 2014, “ Combustion of a Gas-to-Liquid–Based Alternative Jet Fuel: Experimental and Detailed Kinetic Modeling,” Combust. Sci. Technol., 186(10–11), pp. 1275–1283. [CrossRef]
Mzé-Ahmed, A. , Dagaut, P. , Dayma, G. , and Diévart, P. , 2014, “ Kinetics of Oxidation of a 100% Gas-to-Liquid Synthetic Jet Fuel and a Mixture GtL/1-Hexanol in a Jet-Stirred Reactor: Experimental and Modeling Study,” ASME J. Eng. Gas Turbines Power, 137(1), p. 011503. [CrossRef]
Zhu, Y. , Li, S. , Davidson, D. F. , and Hanson, R. K. , 2014, “ Ignition Delay Times of Conventional and Alternative Fuels Behind Reflected Shock Waves,” Proc. Combust. Inst., 35(1), pp. 241–248. [CrossRef]
Moses, C. A. , 2008, “ Comparative Evaluation of Semi-Synthetic Jet Fuels,” Coordinating Research Council, Alpharetta, GA, Contract No. F33415-02-D-2299.
Edwards, T. , Minus, D. , Harrison, W. , Corporan, E. , DeWitt, M. , Zabarnick, S. , and Balster, L. , 2004, “ Fischer-Tropsch Jet Fuels—Characterization for Advanced Aerospace Applications,” AIAA Paper No. 2004-3885.
Ranzi, E. , Frassoldati, A. , Grana, R. , Cuoci, A. , Faravelli, T. , Kelley, A. P. , and Law, C. K. , 2012, “ Hierarchical and Comparative Kinetic Modeling of Laminar Flame Speeds of Hydrocarbon and Oxygenated Fuels,” Prog. Energy Combust. Sci., 38(4), pp. 468–501. [CrossRef]
Beretta, G. P. , Keck, J. C. , Janbozorgi, M. , and Metghalchi, H. , 2012, “ The Rate-Controlled Constrained-Equilibrium Approach to Far-From-Local-Equilibrium Thermodynamics,” Entropy, 14(2), pp. 92–130. [CrossRef]
Goodwin, D. , Moffat, H. , and Speth, R. , 2015, “ Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes,” Cantera, http://www.cantera.org
Rokni, E. , Moghaddas, A. , Askari, O. , and Metghalchi, H. , 2014, “ Measurement of Laminar Burning Speeds and Investigation of Flame Stability of Acetylene (C2H2)/Air Mixtures,” ASME J. Energy Resour. Technol., 137(1), p. 012204. [CrossRef]
Askari, O. , Janbozorgi, M. , Greig, R. , Moghaddas, A. , and Metghalchi, H. , 2015, “ Developing Alternative Approaches to Predicting the Laminar Burning Speed of Refrigerants Using the Minimum Ignition Energy,” Sci. Technol. Built Environ., 21(2), pp. 220–227. [CrossRef]
Askari, O. , Vien, K. , Wang, Z. , Sirioa, M. , and Metghalchi, H. , 2016, “ Exhaust Gas Recirculation Effects on Flame Structure and Laminar Burning Speeds of H2/CO/air Flames at High Pressures and Temperatures,” J. Appl. Energy (in press).
Askari, O. , Elia, M. , Ferrari, M. , and Metghalchi, H. , 2016, “ Auto-Ignition Characteristics Study of Gas-to-Liquid Fuel at High Pressures and Low Temperatures,” Journal of Energy Resources Technology, ASME J. Energy Res. Tech. (accepted).
Askari, O. , Moghaddas, A. , Alholm, A. , Vein, K. , Alhazmi, B. , and Metghalchi, H. , 2016, “ Laminar Burning Speed Measurement and Flame Instability Study of H2/CO/Air Mixtures at High Temperatures and Pressures Using a Novel Multi-Shell Model,” Combust. Flames, 168, pp. 20–31. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Comparison of ignition delay time between available GTL chemical mechanisms [33,34,36,43] and experimental data [23] at equivalence ratio of 1 and pressure of 20 atm for a wide range of temperatures

Grahic Jump Location
Fig. 2

Comparison of laminar burning speed between GTL chemical mechanisms [33,36,43] and experimental data [22,28,30] for different equivalence ratios at pressure of 1 atm and temperature of 400 K

Grahic Jump Location
Fig. 3

Comparison of laminar burning speed between GTL chemical mechanisms [33,36,43] and experimental data [22,28,29,38] for different equivalence ratios at pressure of 1 atm and temperature of 473 K

Grahic Jump Location
Fig. 4

Theoretical ignition delay time for a wide range of pressures and temperatures using Ranzi et al. [43] mechanism for stoichiometric GTL/air mixture

Grahic Jump Location
Fig. 5

Theoretical ignition delay time for a wide range of temperatures at three different equivalence ratios and a pressure of 10 atm using Ranzi et al. [43] mechanism for GTL/air mixture

Grahic Jump Location
Fig. 6

Theoretical ignition delay time for a wide range of temperatures at three different equivalence ratios and a pressure of 50 atm using Ranzi et al. [43] mechanism for GTL/air mixture

Grahic Jump Location
Fig. 7

Theoretical ignition delay time for a wide range of temperatures at three different equivalence ratios and a pressure of 100 atm using Ranzi et al. [43] mechanism for GTL/air mixture

Grahic Jump Location
Fig. 8

Theoretical laminar burning speed and flame thickness for a wide range of equivalence ratios and different temperatures of 400, 500, 600, 700, and 800 K at pressure of 1 atm using Ranzi et al. [43] mechanism for GTL/air mixture

Grahic Jump Location
Fig. 9

Theoretical laminar burning speed and flame thickness for a wide range of equivalence ratios and different pressures of 1, 5, 10, 15, 20, and 25 atm at temperature of 533 K using Ranzi et al. [43] mechanism for GTL/air mixture

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In