0
Research Papers: Energy Storage/Systems

Thermo-Economic Evaluation of Novel Flexible CAES/CCPP Concept

[+] Author and Article Information
Stephan Herrmann

Institute for Energy Systems,
Technische Universität München,
Garching bei München 85748, Germany
e-mail: stephan.herrmann@tum.de

Steffen Kahlert

Mem. ASME
Institute for Energy Systems,
Technische Universität München,
Garching bei München 85748, Germany
e-mail: steffen.kahlert@tum.de

Manuel Wuerth

Institute for Energy Systems,
Technische Universität München,
Garching bei München 85748, Germany
e-mail: manuel.wuerth@tum.de

Hartmut Spliethoff

Institute for Energy Systems,
Technische Universität München,
Garching bei München 85748, Germany
e-mail: spliethoff@tum.de

1Corresponding author.

Contributed by the Advanced Energy Systems Division of ASME for publication in the JOURNAL OF ENERGY RESOURCES TECHNOLOGY. Manuscript received June 28, 2016; final manuscript received November 28, 2016; published online January 9, 2017. Assoc. Editor: Mohamed A. Habib.

J. Energy Resour. Technol 139(1), 011902 (Jan 09, 2017) (10 pages) Paper No: JERT-16-1271; doi: 10.1115/1.4035424 History: Received June 28, 2016; Revised November 28, 2016

This paper presents the results of a thermodynamic and economic evaluation of a novel hybrid combination of a compressed air energy storage (CAES) and a combined cycle power plant (CCPP). The new cycle is modeled on the basis of a GE LM6000 gas turbine model, an adiabatic compressor model, an air expander, and a conventional dual-pressure heat recovery steam generator (HRSG) configuration. Furthermore, a detailed design of the recuperator is presented. With the simulated components, a storage efficiency of 60% is reached. In combined heat and power (CHP) configuration, the total efficiency of the plant reaches up to 86.2%. The thermodynamic and economic performance is compared to a conventional LM6000 combined cycle. For the economic evaluation, the German electricity day-ahead prices and average gas price of the year 2014 are used. Overall, it is found that the CAES/CCPP concept exhibits far more operation hours per year and a higher profit margin than the compared CCPP. Taking into account the investment and operational costs, especially with steam extraction, the net present value (NPV) of the novel cycle is higher than that of the combined cycle, despite the challenging market environment for storage technologies in Germany.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Madeler, R. , and Latz, J. , 2013, “ Economics of Centralized and Decentralized Compressed Air Energy Storage for Enhanced Grid Integration of Wind Power,” Appl. Energy, 101, pp. 299–309. [CrossRef]
Rogers, A. , Henderson, A. , Wang, X. , and Negnevitsky, M. , 2014, “ Compressed Air Energy Storage: Thermodynamic and Economic Review,” IEEE Power and Energy Society General Meeting, Oct. 29, Paper No. 6939098.
Nakhamkin, M. , Andersson, L. , and Swensen, E. , 1992, “ AEC 110 MW CAES Plant: Status of Project,” ASME J. Eng. Gas Turbines Power, 114(4), pp. 695–700. [CrossRef]
Schainker, R. B. , and Nakhamkin, M. , 1985, “ Compressed-Air Energy Storage (CAES): Overview, Performance and Cost Data for 25 MW to 220 MW Plants,” IEEE Trans. Power Appar. Syst., PAS-104(4), pp. 791–795. [CrossRef]
Dresser-Rand, 2016, “ SMARTCAES,” Siemens Power and Gas, http://www.dresser-rand.com/industries/energy-environment/compressed-air-energy-storage/
Grazzini, G. , and Milazzo, A. , 2012, “ A Thermodynamic Analysis of Multistage Adiabatic CAES,” Proc. IEEE, 100(2), pp. 461–472. [CrossRef]
Hartmann, N. , Vohringer, O. , Kruck, C. , and Eltrop, L. , 2012, “ Simulation and Analysis of Different Adiabatic Compressed Air Energy Storage Plant Configurations,” Appl. Energy, 93, pp. 541–548. [CrossRef]
Grazzini, G. , and Milazzo, A. , 2008, “ Thermodynamic Analysis of CAES/TES Systems for Renewable Energy Plants,” Renewable Energy, 33(9), pp. 1998–2006. [CrossRef]
RWE Power, 2010, “ ADELE- Der Adiabate Druckluftspeicher Fur Die Elektrizitatsversorgung,” Essen, Germany, http://www.dlr.de/portaldata/1/resources/standorte/stuttgart/broschuere_adele_1_.pdf
Moser, P. , 2014, “ Status der Entwicklung des adiabaten Druckluftspeichers ADELE,” Leopoldina-Symposium Halle, pp. 11–12.
Lightsail Energy, 2009, Berkeley, CA, http://www.lightsail.com/
CAEstorage, 2012, Egenhofen, Germany, http://www.caestorage.de/
Upendra Roy, B. P. , and Rengarajan, N. , 2017, “ Feasibility Study of an Energy Storage System for Distributed Generation System in Islanding Mode,” ASME J. Energy Resour. Technol., 139(1), p. 011901. [CrossRef]
Nielsen, L. , Qi, D. , Brinkmeier, N. , and Leithner, R. , 2012, “ Druckluftspeicherkraftwerke zur Netzintegration–ISACOAST CC,” 4. Göttinger Tagung zu aktuellen Fragen zur Entwicklung der Energieversorgungsnetze, Göttingen, pp. 1–8
Hartmann, N. , Eltrop, L. , Nauer, N. , Salzer, J. , Schwarz, S. , and Schmidt, M. , 2012, “ Stromspeicherpotenziale für Deutschland,” University of Stuttgart, Stuttgart, Germany, http://www.zfes.uni-stuttgart.de/deutsch/downloads/20120727_Final_Stromspeicherpotenziale_fuer_Deutschland-.pdf
Wick, J. , 2006, “ Advanced Gas Turbine Technology GT26,” Jornada Tecnológica, Madrid, pp. 1–29.
Savic, S. , Lindvall, K. , Papadopoulos, T. , and Ladwig, M. , 2011, “ The Next Generation KA24/GT24 From Alstom, The Pioneer In Operational Flexibility,” Alstom, Saint-Ouen, France, http://www.multivu.com/assets/52004/documents/GT24-Technical-Paper-original.pdf
GE Power & Water, 2015, “ LM6000-PF+ gas turbine with dry low emissions (DLE) combustor,” General Electric Company, Fairfield, CT, https://powergen.gepower.com/content/dam/gepower-pgdp/global/en_US/documents/product/lm6000-pf-plus-fact-sheet.pdf
Marcus Nölke , 2006, “Compressed Air Energy Storage(CAES)–eine sinnvolle Ergänzung zur Energieversorgung?” Ph.D. defense presentation, RWTH Aachen, Aachen, Germany.
Kim, Y. M. , Shin, D. G. , and Favrat, D. , 2011, “ Operating Characteristics of Constant-Pressure Compressed Air Energy Storage (CAES) System Combined With Pumped Hydro Storage Based on Energy and Exergy Analysis,” Energy, 36(10), pp. 6220–6233. [CrossRef]
Kushnir, R. , Dayan, A. , and Ullmann, A. , 2012, “ Temperature and Pressure Variations Within Compressed Air Energy Storage Caverns,” Int. J. Heat Mass Transfer, 55(21–22), pp. 5616–5630. [CrossRef]
Neuimin, V. M. , 2014, “ Methods of Evaluating Power Losses for Ventilation in Stages of Steam Turbines of TES,” Therm. Eng., 61(10), pp. 765–770. [CrossRef]
Petrovic, M. , and Riess, W. , 1997, “ Off-Design Flow Analysis of Low-Pressure Steam Turbines,” Proc. Inst. Mech. Eng., Part A, 211(3), pp. 215–224. [CrossRef]
Verein Deutscher Ingenieure, 2006, VDI Wärmeatlas, Version 10, Springer Verlag, Berlin.
Lund, H. , Salgi, G. , Elmegaard, B. , and Andersen, A.N. , 2009, “ Optimal Operation Strategies of Compressed Air Energy Storage (CAES) on Electricity Spot Markets With Fluctuating Prices,” Appl. Therm. Eng., 29(5–6), pp. 799–806. [CrossRef]
Salgi, G. , and Lund, H. , 2008, “ System Behaviour of Compressed-Air Energy-Storage in Denmark With a High Penetration of Renewable Energy Sources,” Appl. Energy, 85(4), pp. 182–189. [CrossRef]
Agentur für Erneuerbare Energien, 2012, “ Studienvergleich: Entwicklung der Investitionskosten neuer Kraftwerke,” http://www.forschungsradar.de/uploads/media/AEE_Dossier_Studienvergleich_Investitionskosten_nov12.pdf
Haslbeck, J. L. , Kuehn, N. J. , Lewis, E. G. , Pinkerton, L. L. , Simpson, J. , Turner, M. J. , Varghese, E. , and Woods, M. C. , 2013, “ Cost and Performance Baseline for Fossil Energy Plants. Volume 1: Bituminous Coal and Natural Gas to Electricity,” US Department of Energy, Pittsburgh, PA, http://www.netl.doe.gov/File%20Library/Research/Energy%20Analysis/OE/BitBase_FinRep_Rev2a-3_20130919_1.pdf
Turnton, R. , Bailie, R. C. , Whiting, W. B. , and Shaeiwitz, J. A. , 2012, Analysis, Synthesis and Design of Chemical Processes, 4th ed., Prentice Hall/Cloth, Upper Saddle River, NJ.
Fu, Z. , Lu, K. , and Zhu, Y. , 2015, “ Thermal System Analysis and Optimization of Large-Scale Compressed Air Energy Storage (CAES),” Energies, 8(8), pp. 8873–8886. [CrossRef]
European Energy Exchange, 2016, Leipzig, Germany, www.eex.com
Bundesamt für Wirtschaft und Ausfuhrkontrolle, 2016, “ Aufkommen und Export von Erdgas sowie die Entwicklung der Grenzübergangspreise ab 1991,” Eschborn, Germany, http://www.bafa.de/SharedDocs/Downloads/DE/Energie/egas_aufkommen_export_1991.xls;jsessionid=9998A41F00D05CF6468E23E9F0D4525C.1_cid387?__blob=publicationFile&v=3
Urbs-media, 1993, “ German Depreciation Tables for Power Plants,” http://www.urbs.de/afa/change.htm?afa10.htm
Mazloum, Y. , Sayah, H. , and Nemer, M. , 2016, “ Static and Dynamic Modeling Comparison of an Adiabatic Compressed Air Energy Storage System,” ASME J. Energy Resour. Technol., 138(6), p. 062001. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

CAES/CCPP plant in charge mode

Grahic Jump Location
Fig. 2

CAES/CCPP plant in discharge mode

Grahic Jump Location
Fig. 3

CAES/CCPP plant in combined cycle mode

Grahic Jump Location
Fig. 4

Booster compressor and aftercooler

Grahic Jump Location
Fig. 5

Exergy flows during a full charge/discharge cycle with steam extraction

Grahic Jump Location
Fig. 6

Comparison of the operation behavior of the CAES/CCPP and the CCPP in the first week of January 2014

Grahic Jump Location
Fig. 7

Comparison of the operation behavior of the CAES/CCPP and the CCPP with steam extraction in the first week of January 2014

Grahic Jump Location
Fig. 8

Exemplary evolution of the net present value for the CAES/CCPP and the CCPP

Grahic Jump Location
Fig. 9

Exemplary evolution of the net present value for the CAES/CCPP and CCPP with constant steam extraction

Grahic Jump Location
Fig. 10

Exemplary evolution of the net present value for the CAES/CCPP and CCPP with constant steam extraction and incentives

Grahic Jump Location
Fig. 11

Heat demand curve and heat supply covered by the CAES/CCPP or CCPP

Grahic Jump Location
Fig. 12

Exemplary evolution of the net present value for the CAES/CCPP and CCPP with varying heat supply and incentives

Grahic Jump Location
Fig. 13

Results of the parameter study for the different cases shown in Table 10 for constant steam extraction

Grahic Jump Location
Fig. 14

Results of the parameter study for the different cases shown in Table 10 for varying heat supply

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In