0
Research Papers: Petroleum Engineering

A Preliminary Investigation Into the Characterization of Asphaltenes Extracted From an Oil Sand and Two Vacuum Residues From Petroleum Refining Using Nuclear Magnetic Resonance, DEPT, and MALDI-TOF

[+] Author and Article Information
Ce Zheng, Wenxu Zhou, Dongke Zhang

Centre for Energy (M473),
The University of Western Australia,
35 Stirling Highway,
Crawley, WA 6009, Australia

Mingming Zhu

Centre for Energy (M473),
The University of Western Australia,
35 Stirling Highway,
Crawley, WA 6009, Australia
e-mail: mingming.zhu@uwa.edu.au

1Corresponding author.

Contributed by the Petroleum Division of ASME for publication in the JOURNAL OF ENERGY RESOURCES TECHNOLOGY. Manuscript received January 4, 2016; final manuscript received December 21, 2016; published online February 6, 2017. Assoc. Editor: Daoyong (Tony) Yang.

J. Energy Resour. Technol 139(3), 032905 (Feb 06, 2017) (9 pages) Paper No: JERT-16-1006; doi: 10.1115/1.4035746 History: Received January 04, 2016; Revised December 21, 2016

This paper reports the findings of an investigation into the molecular structures and properties of three asphaltene samples, namely, an asphaltene sample extracted from Buton Oil Sand (Indonesia), and two asphaltene samples extracted from vacuum residues from Liaohe Refinery (China) and Vene Refinery (Venezuela), respectively. The average molecular structural parameters, including the average polycyclic aromatic hydrocarbon (PAH) size, average side chain length, and average molecular weight (AMW), of the three asphaltene samples were estimated using data from nuclear magnetic resonance (NMR) in combination with distortionless enhancement by polarization transfer (DEPT), and then compared against each other. The molecular weight distributions (MWDs) of the three asphaltene samples were measured using a matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The results indicated that the island molecular architecture predominated in all three asphaltenes and the average polycyclic aromatic hydrocarbon size was found to be six rings. The average molecular weight of the Buton asphaltene sample was found to be ca. 800 Da while those of the two petroleum asphaltene samples were approximately 600 Da. In comparison, the Buton asphaltene sample contained a much higher level of oxygen and sulfur, but a lower aromaticity than those of the two petroleum asphaltene samples. The use of liquid NMR in combination with DEPT was shown to provide an effective method for characterization and estimation of the molecular structures of asphaltenes, supported by MALDI-TOF mass spectra.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Leontaritis, K. J. , 2005, “ Asphaltene Near-Well-Bore Formation Damage Modeling,” ASME J. Energy Resour. Technol., 127(3), pp. 191–200. [CrossRef]
Wang, S. , and Civan, F. , 2005, “ Modeling Formation Damage by Asphaltene Deposition During Primary Oil Recovery,” ASME J. Energy Resour. Technol., 127(4), pp. 310–317. [CrossRef]
Mullins, O. C. , Sheu, E. Y. , Hammami, A. , and Marshall, A. G. , 2007, Asphaltenes, Heavy Oils, and Petroleomics, Springer, New York.
Mousavi, S. M. R. , Najafi, I. , Ghazanfari, M. H. , and Amani, M. , 2012, “ Comparison of Ultrasonic Wave Radiation Effects on Asphaltene Aggregation in Toluene–Pentane Mixture Between Heavy and Extra Heavy Crude Oils,” ASME J. Energy Resour. Technol., 134(2), p. 022001. [CrossRef]
Manshad, A. K. , Rostami, H. , Rezaei, H. , and Hosseini, S. M. , 2015, “ Application of Artificial Neural Network-Particle Swarm Optimization Algorithm for Prediction of Asphaltene Precipitation During Gas Injection Process and Comparison With Gaussian Process Algorithm,” ASME J. Energy Resour. Technol., 137(6), p. 062904. [CrossRef]
Naderi, K. , and Babadagli, T. , 2016, “ Solvent Selection Criteria and Optimal Application Conditions for Heavy-Oil/Bitumen Recovery at Elevated Temperatures: A Review and Comparative Analysis,” ASME J. Energy Resour. Technol., 138(1), p. 012904. [CrossRef]
Clutter, D. R. , Petrakis, L. , Stenger, R. L., Jr. , and Jensen, R. K. , 1972, “ Nuclear Magnetic Resonance Spectrometry of Petroleum Fractions. Carbon-13 and Proton Nuclear Magnetic Resonance Characterizations in Terms of Average Molecule Parameters,” Anal. Chem., 44(8), pp. 1395–1405. [CrossRef]
Snape, C. E. , Ladner, W. R. , and Bartle, K. D. , 1979, “ Survey of Carbon-13 Chemical Shifts in Aromatic Hydrocarbons and Its Application to Coal-Derived Materials,” Anal. Chem., 51(13), pp. 2189–2198. [CrossRef]
Dickinson, E. M. , 1980, “ Structural Comparison of Petroleum Fractions Using Proton and 13C NMR Spectroscopy,” Fuel, 59(5), pp. 290–294. [CrossRef]
Christopher, J. , Sarpal, A. S. , Kapur, G. S. , Krishna, A. , Tyagi, B. R. , Jain, M. C. , Jain, S. K. , and Bhatnagar, A. K. , 1996, “ Chemical Structure of Bitumen-Derived Asphaltenes by Nuclear Magnetic Resonance Spectroscopy and X-Ray Diffractometry,” Fuel, 75(8), pp. 999–1008. [CrossRef]
Masuda, K. , Okuma, O. , Nishizawa, T. , Kanaji, M. , and Matsumura, T. , 1996, “ High-Temperature NMR Analysis of Aromatic Units in Asphaltenes and Preasphaltenes Derived From Victorian Brown Coal,” Fuel, 75(3), pp. 295–299. [CrossRef]
Michon, L. , Martin, D. , Planche, J.-P. , and Hanquet, B. , 1997, “ Estimation of Average Structural Parameters of Bitumens by 13C Nuclear Magnetic Resonance Spectroscopy,” Fuel, 76(1), pp. 9–15. [CrossRef]
Artok, L. , Su, Y. , Hirose, Y. , Hosokawa, M. , Murata, S. , and Nomura, M. , 1999, “ Structure and Reactivity of Petroleum-Derived Asphaltene,” Energy Fuels, 13(2), pp. 287–296. [CrossRef]
Begon, V. , Suelves, I. , Islas, C. A. , Millan, M. , Dubau, C. , Lazaro, M. J. , Law, R. V. , Herod, A. A. , Dugwell, D. R. , and Kandiyoti, R. , 2003, “ Comparison of the Quaternary Aromatic Carbon Contents of a Coal, a Coal Extract, and Its Hydrocracking Products by NMR Methods,” Energy Fuels, 17(6), pp. 1616–1629. [CrossRef]
Sheremata, J. M. , Gray, M. R. , Dettman, H. D. , and McCaffrey, W. C. , 2004, “ Quantitative Molecular Representation and Sequential Optimization of Athabasca Asphaltenes,” Energy Fuels, 18(5), pp. 1377–1384. [CrossRef]
Trejo, F. , Ancheyta, J. , Morgan, T. J. , Herod, A. A. , and Kandiyoti, R. , 2007, “ Characterization of Asphaltenes From Hydrotreated Products by SEC, LDMS, MALDI, NMR, and XRD,” Energy Fuels, 21(4), pp. 2121–2128. [CrossRef]
Andrews, A. B. , Edwards, J. C. , Pomerantz, A. E. , Mullins, O. C. , Nordlund, D. , and Norinaga, K. , 2011, “ Comparison of Coal-Derived and Petroleum Asphaltenes by 13C Nuclear Magnetic Resonance, DEPT, and XRS,” Energy Fuels, 25(7), pp. 3068–3076. [CrossRef]
Sanchez-Minero, F. , Ancheyta, J. , Silva-Oliver, G. , and Flores-Valle, S. , 2013, “ Predicting SARA Composition of Crude Oil by Means of NMR,” Fuel, 110, pp. 318–321. [CrossRef]
Fergoug, T. , and Bouhadda, Y. , 2014, “ Determination of Hassi Messaoud Asphaltene Aromatic Structure From 1H & 13C NMR Analysis,” Fuel, 115, pp. 521–526. [CrossRef]
Morgan, T. , Alvarez-Rodriguez, P. , George, A. , Herod, A. , and Kandiyoti, R. , 2010, “ Characterization of Maya Crude Oil Maltenes and Asphaltenes in Terms of Structural Parameters Calculated From Nuclear Magnetic Resonance (NMR) Spectroscopy and Laser Desorption–Mass Spectroscopy (LD–MS),” Energy Fuels, 24(7), pp. 3977–3989. [CrossRef]
Ostlund, J. A. , Wattana, P. , Nyden, M. , and Fogler, H. S. , 2004, “ Characterization of Fractionated Asphaltenes by UV-Vis and NMR Self-Diffusion Spectroscopy,” J. Colloid Interface Sci., 271(2), pp. 372–380. [CrossRef] [PubMed]
Buenrostro-Gonzalez, E. , Groenzin, H. , Lira-Galeana, C. , and Mullins, O. C. , 2001, “ The Overriding Chemical Principles That Define Asphaltenes,” Energy Fuels, 15(4), pp. 972–978. [CrossRef]
Calemma, V. , Iwanski, P. , Nali, M. , Scotti, R. , and Montanari, L. , 1995, “ Structural Characterization of Asphaltenes of Different Origins,” Energy Fuels, 9(2), pp. 225–230. [CrossRef]
Storm, D. A. , Edwards, J. C. , DeCanio, S. J. , and Sheu, E. Y. , 1994, “ Molecular Representations of Ratawi and Alaska North Slope Asphaltenes Based on Liquid-and Solid-State NMR,” Energy Fuels, 8(3), pp. 561–566. [CrossRef]
Rafenomanantsoa, A. , Nicole, D. , Rubini, P. , and Lauer, J. C. , 1994, “ Structural Analysis by NMR and FIMS of the Tar-Sand Bitumen of Bemolanga (Malagasy),” Energy Fuels, 8(3), pp. 618–628. [CrossRef]
Dutta Majumdar, R. , Gerken, M. , Mikula, R. , and Hazendonk, P. , 2013, “ Validation of the Yen–Mullins Model of Athabasca Oil-Sands Asphaltenes Using Solution-State 1H NMR Relaxation and 2D HSQC Spectroscopy,” Energy Fuels, 27(11), pp. 6528–6537. [CrossRef]
Buch, L. , Groenzin, H. , Buenrostro-Gonzalez, E. , Andersen, S. I. , Lira-Galeana, C. , and Mullins, O. C. , 2003, “ Molecular Size of Asphaltene Fractions Obtained From Residuum Hydrotreatment,” Fuel, 82(9), pp. 1075–1084. [CrossRef]
Yoshida, T. , Maekawa, Y. , Uchino, H. , and Yokoyama, S. , 1980, “ Derivation of Structural Parameters for Coal-Derived Oil by Carbon-13 Nuclear Magnetic Resonance Spectrometry,” Anal. Chem., 52(6), pp. 817–820. [CrossRef]
Gillet, S. , Delpuech, J. , Valentin, P. , and Escalier, J. , 1980, “ Optimum Conditions for Crude Oil and Petroleum Product Analysis by Carbon-13 Nuclear Magnetic Resonance Spectrometry,” Anal. Chem., 52(6), pp. 813–817. [CrossRef]
Karas, M. , and Hillenkamp, F. , 1988, “ Laser Desorption Ionization of Proteins With Molecular Masses Exceeding 10,000 Daltons,” Anal. Chem., 60(20), pp. 2299–2301. [CrossRef] [PubMed]
Pantoja, P. A. , Mendes, M. A. , and Nascimento, C. A. O. , 2013, “ Contribution of Mass Spectrometry in Assessing Quality of Petroleum Fractions: The Use of Mass Spectrometry for Assessing Asphaltenes,” J. Pet. Sci. Eng., 109, pp. 198–205. [CrossRef]
Martínez-Haya, B. , Hortal, A. R. , Hurtado, P. , Lobato, M. D. , and Pedrosa, J. M. , 2007, “ Laser Desorption/Ionization Determination of Molecular Weight Distributions of Polyaromatic Carbonaceous Compounds and Their Aggregates,” J. Mass Spectrom., 42(6), pp. 701–713. [CrossRef] [PubMed]
Apicella, B. , Carpentieri, A. , Alfè, M. , Barbella, R. , Tregrossi, A. , Pucci, P. , and Ciajolo, A. , 2007, “ Mass Spectrometric Analysis of Large PAH in a Fuel-Rich Ethylene Flame,” Proc. Combust. Inst., 31(1), pp. 547–553. [CrossRef]
Rizzi, A. , Cosmina, P. , Flego, C. , Montanari, L. , Seraglia, R. , and Traldi, P. , 2006, “ Laser Desorption/Ionization Techniques in the Characterization of High Molecular Weight Oil Fractions—Part 1: Asphaltenes,” J. Mass Spectrom., 41(9), pp. 1232–1241. [CrossRef] [PubMed]
Acevedo, S. , Gutierrez, L. B. , Negrin, G. , Pereira, J. C. , Mendez, B. , Delolme, F. , Dessalces, G. , and Broseta, D. , 2005, “ Molecular Weight of Petroleum Asphaltenes: A Comparison Between Mass Spectrometry and Vapor Pressure Osmometry,” Energy Fuels, 19(4), pp. 1548–1560. [CrossRef]
Tanaka, R. , Sato, S. , Takanohashi, T. , Hunt, J. E. , and Winans, R. E. , 2004, “ Analysis of the Molecular Weight Distribution of Petroleum Asphaltenes Using Laser Desorption-Mass Spectrometry,” Energy Fuels, 18(5), pp. 1405–1413. [CrossRef]
Hortal, A. R. , Hurtado, P. , Martínez-Haya, B. , and Mullins, O. C. , 2007, “ Molecular-Weight Distributions of Coal and Petroleum Asphaltenes From Laser Desorption/Ionization Experiments,” Energy Fuels, 21(5), pp. 2863–2868. [CrossRef]
Hortal, A. R. , Martínez-Haya, B. , Lobato, M. D. , Pedrosa, J. M. , and Lago, S. , 2006, “ On the Determination of Molecular Weight Distributions of Asphaltenes and Their Aggregates in Laser Desorption Ionization Experiments,” J. Mass Spectrom., 41(7), pp. 960–968. [CrossRef] [PubMed]
Pomerantz, A. E. , Hammond, M. R. , Morrow, A. L. , Mullins, O. C. , and Zare, R. N. , 2008, “ Two-Step Laser Mass Spectrometry of Asphaltenes,” J. Am. Chem. Soc., 130(23), pp. 7216–7217. [CrossRef] [PubMed]
Luo, P. , Wang, X. , and Gu, Y. , 2010, “ Characterization of Asphaltenes Precipitated With Three Light Alkanes Under Different Experimental Conditions,” Fluid Phase Equilib., 291(2), pp. 103–110. [CrossRef]
Brown, J. K. , and Ladner, W. R. , 1960, “ A Study of the Hydrogen Distribution in Coal-Like Materials by High-Resolution Nuclear Magnetic Resonance Spectroscopy—2: A Comparison With Infra-Red Measurement and the Conversion to Carbon Structure,” Fuel, 39, pp. 87–96.
Knight, S. A. , 1967, “ Analysis of Aromatic Petroleum Fractions by Means of Absorption Mode Carbon-13 NMR Spectroscopy,” Chem. Ind., 11, pp. 1920–1923.
Doddrell, D. M. , Pegg, D. T. , and Bendall, M. R. , 1982, “ Distortionless Enhancement of NMR Signals by Polarization Transfer,” J. Magn. Reson. (1969), 48(2), pp. 323–327. [CrossRef]
Friebolin, H. , 1991, Basic One-and Two-Dimensional NMR Spectroscopy, Wiley VCH Weinheim, Germany.
Solum, M. S. , Pugmire, R. J. , and Grant, D. M. , 1989, “ Carbon-13 Solid-State NMR of Argonne-Premium Coals,” Energy Fuels, 3(2), pp. 187–193. [CrossRef]
Mullins, O. C. , Sabbah, H. , Eyssautier, J. , Pomerantz, A. E. , Barre, L. , Andrews, A. B. , Ruiz-Morales, Y. , Mostowfi, F. , McFarlane, R. , Goual, L. , Lepkowicz, R. , Cooper, T. , Orbulescu, J. , Leblanc, R. M. , Edwards, J. , and Zare, R. N. , 2012, “ Advances in Asphaltene Science and the Yen–Mullins Model,” Energy Fuels, 26(7), pp. 3986–4003. [CrossRef]
Mullins, O. C. , 2010, “ The Modified Yen Model,” Energy Fuels, 24(4), pp. 2179–2207. [CrossRef]
Groenzin, H. , and Mullins, O. C. , 2000, “ Molecular Size and Structure of Asphaltenes From Various Sources,” Energy Fuels, 14(3), pp. 677–684. [CrossRef]
Groenzin, H. , and Mullins, O. C. , 1999, “ Asphaltene Molecular Size and Structure,” J. Phys. Chem. A, 103(50), pp. 11237–11245. [CrossRef]
Murgich, J. , 2002, “ Intermolecular Forces in Aggregates of Asphaltenes and Resins,” Pet. Sci. Technol., 20(9–10), pp. 983–997. [CrossRef]
Murgich, J. , Rodríguez, J. , and Aray, Y. , 1996, “ Molecular Recognition and Molecular Mechanics of Micelles of Some Model Asphaltenes and Resins,” Energy Fuels, 10(1), pp. 68–76. [CrossRef]
Foster, R. , 1974, “ Organic Charge Transfer Complexes, 1969,” Molecular Complexes, Vol. 73, R. Foster , ed., Academic Press, New York, pp. 1–2.
Ruiz-Morales, Y. , and Mullins, O. C. , 2007, “ Polycyclic Aromatic Hydrocarbons of Asphaltenes Analyzed by Molecular Orbital Calculations With Optical Spectroscopy,” Energy Fuels, 21(1), pp. 256–265. [CrossRef]
Abraham, R. J. , Canton, M. , and Griffiths, L. , 2001, “ Proton Chemical Shifts in NMR—Part 17: Chemical Shifts in Alkenes and Anisotropic and Steric Effects of the Double Bond,” Magn. Reson. Chem., 39(8), pp. 421–431. [CrossRef]
Dhami, K. S. , and Stothers, J. B. , 1965, “ 13C NMR Studies—Part V: Carbon-13 Spectra of Some Substituted Styrenes,” Can. J. Chem., 43(2), pp. 510–520. [CrossRef]
Mullins, O. C. , 2011, “ The Asphaltenes,” Annual Review of Analytical Chemistry, Vol 4, pp. 393–418.
Sabbah, H. , Morrow, A. L. , Pomerantz, A. E. , and Zare, R. N. , 2011, “ Evidence for Island Structures as the Dominant Architecture of Asphaltenes,” Energy Fuels, 25(4), pp. 1597–1604. [CrossRef]
Hurt, M. R. , Borton, D. J. , Choi, H. J. , and Kenttaümaa, H. I. , 2013, “ Comparison of the Structures of Molecules in Coal and Petroleum Asphaltenes by Using Mass Spectrometry,” Energy Fuels, 27(7), pp. 3653–3658. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

A schematic of asphaltene sample preparation procedure

Grahic Jump Location
Fig. 2

1H NMR spectra of the three asphaltene samples

Grahic Jump Location
Fig. 3

13C NMR spectra of the three asphaltene samples

Grahic Jump Location
Fig. 4

DEPT-135 spectra of the three asphaltene samples

Grahic Jump Location
Fig. 5

Subdivision of the aliphatic regions according to DEPT-135

Grahic Jump Location
Fig. 6

MALDI-TOF spectra of the three asphaltene samples

Grahic Jump Location
Fig. 7

Simplified molecular structural models for the three samples studied

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In