An experimental study on heterogeneous porous stacks in a Thermoacoustic Heat

[+] Author and Article Information
Syeda Humaira Tasnim

School of Engineering, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1 Canada

1Corresponding author.

ASME doi:10.1115/1.4036053 History: Received December 29, 2016; Revised February 20, 2017


Growing evidence suggests that research must be done to develop energy efficient systems and clean energy conversion technologies to combat the limited sources of fossil fuel, its high price, and its adverse effects on environment. Thermoacoustic is a clean energy conversion technology that uses the conversion of sound to thermal energy and vice versa for the design of heat engines and refrigerators. However, the efficient conversion of sound to thermal energy demands research on altering fluid, operational, and geometric parameters. The present study is a contribution to improve the efficiency of thermoacoustic devices by introducing a novel stack design. This novel stack consists of alternative conducting and insulating materials or heterogeneous materials. The author examined the performance of 8 different types of heterogeneous stacks (combination 1 to 8) that are only a fraction of the displacement amplitude long and consisted of alternating Aluminum and Corning Celcor or Reticulated Vitreous Carbon (RVC) foam materials. From the thermal field measurements, the author found that combination 8 performs better (12% more temperature difference at the stack ends) than all the other combinations. One interesting feature obtained from these experiments is that combination 7 produces the minimum temperature at the cold end (17% less than other combinations). The thermal performance of the heterogeneous stack is compared to that of the traditional homogeneous stack. Based on the study, the newly proposed stack design provides better cooling performance than a traditionally designed stack.

Copyright (c) 2017 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In