Research Papers: Alternative Energy Sources

A Novel Geometry for Vertical Axis Wind Turbines Based on the Savonius Concept

[+] Author and Article Information
Michele Mari, Mauro Venturini

Dipartimento di Ingegneria,
Università degli Studi di Ferrara,
Via Giuseppe Saragat, 1,
Ferrara 44122, Italy

Asfaw Beyene

Department of Mechanical Engineering,
San Diego State University,
5500 Campanile Drive,
San Diego, CA 92182-5102

Contributed by the Advanced Energy Systems Division of ASME for publication in the JOURNAL OF ENERGY RESOURCES TECHNOLOGY. Manuscript received May 13, 2017; final manuscript received May 17, 2017; published online July 18, 2017. Editor: Hameed Metghalchi.

J. Energy Resour. Technol 139(6), 061202 (Jul 18, 2017) (9 pages) Paper No: JERT-17-1221; doi: 10.1115/1.4036964 History: Received May 13, 2017; Revised May 17, 2017

In this study, we present the results of a two-dimensional fluid-dynamic simulation of novel rotor geometry with spline function which is derivative of the traditional S-shape Savonius blade. A computational fluid dynamic (CFD) analysis is conducted using the Spalart–Allmaras turbulent model, validated using experimental data released by Sandia National Laboratory. Results are presented in terms of dimensionless torque and power coefficients, assuming a wind speed of 7 m/s and height and rotor diameter of 1 m. Furthermore, analysis of the forces acting on the rotor is conducted by evaluating frontal and side forces on each blade, and the resultant force acting on the central shaft. A qualitative representation of the vorticity around the traditional and spline rotor is shown to prove that the novel blade allows less turbulent flow through the rotor.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


Manwell, J. F. , McGowan, H. G. , and Rogers, A. L. , 2009, Wind Energy Explained: Theory, Design and Application, 2nd ed., Wiley, Chichester, UK. [CrossRef]
Gupta, A. K. , 2015, “ Efficient Wind Energy Conversion: Evolution to Modern Design,” ASME J. Energy Resour. Technol., 137(5), p. 051201. [CrossRef]
GWEC, 2014, “The Risks of Zero-Subsidy Offshore Wind,” Global Wind Energy Council, Brussels, Belgium, accessed Apr. 15, 2016, www.gwec.net
Anderson, M. , and Beyene, A. , 2015, “ Integrated Resource Mapping of Wave and Wind Energy,” ASME J. Energy Resour. Technol., 138(1), p. 011203. [CrossRef]
Ibrahim, M. , Alsultan, A. , Shen, S. , and Amano, R. S. , 2015, “ Advances in Horizontal Axis Wind Turbine Blade Designs: Introduction of Slots and Tubercle,” ASME J. Energy Resour. Technol., 137(5), p. 051205. [CrossRef]
Jackson, R. S. , and Amano, R. , 2017, “ Experimental Study and Simulation of a Small-Scale Horizontal-Axis Wind Turbine,” ASME J. Energy Resour. Technol., 139(5), p. 051207. [CrossRef]
Eriksson, S. , Bernhoff, H. , and Leijon, M. , 2008, “ Evaluation of Different Turbine Concepts for Wind Power,” Renewable Sustainable Energy Rev., 12(5), pp. 1419–1434. [CrossRef]
Riegler, H. , 2003, “ HAWT Versus VAWT,” Refocus, 4(4), pp. 44–46. [CrossRef]
Ricci, R. , Romagnoli, R. , Montelpare, S. , and Vitali, D. , 2016, “ Experimental Study on a Savonius Wind Rotor for Street Lighting Systems,” Appl. Energy, 161, pp. 143–152. [CrossRef]
Krishnan, A. , and Paraschivoiu, M. , 2016, “ 3D Analysis of Building Mounted VAWT With Diffuser Shaped Shroud,” Sustainable Cities Soc., 27, pp. 160–166. [CrossRef]
Skrzypinski, W. , Bak, C. , Beller, C. , Thorseth, A. , Bühler, F. , Poulsen, P. B. , and Andresen, C. , 2013, “ Wind Turbines on CO2 Neutral Luminaries in Urban Areas,” European Wind Energy Conference and Exhibition (EWEC), Vienna, Austria, Feb. 4–7, Vol. 2, pp. 898–904. http://orbit.dtu.dk/files/52282582/Wind_Turbines_on_CO2_Neutral_presentation.pdf
Plourde, B. , Abraham, J. , Mowry, G. , and Minkowycz, W. , 2011, “ Vertical-Axis Wind Turbines for Powering Cellular Communication Towers,” NSTI Nanotechnology Conference and Expo (NSTI-Nanotech), Boston, MA, June 13–16, Vol. 3, pp. 750–753. http://www.nsti.org/procs/Nanotech2011v3/10/W8.864
Fiedler, B. H. , and Bukovsky, M. S. , 2011, “ The Effect of a Giant Wind Farm on Precipitation in a Regional Climate Model,” Environ. Res. Lett., 6(4), p. 045101. [CrossRef]
Keith, D. W. , DeCarolis, J. F. , Denkenberger, D. C. , Lenschow, D. H. , Malyshev, S. L. , Pacala, S. , and Rasch, P. J., 2004, “ The Influence of Large-Scale Wind Power on Global Climate,” PNAS, 101(46), pp. 16115–16120. [CrossRef] [PubMed]
Wang, C. , and Prinn, R. G. , 2010, “ Potential Climatic Impacts and Reliability of Very Large-Scale Wind Farms,” Atmos. Chem. Phys., 10(4), pp. 2053–2061. [CrossRef]
Tummala, A. , Velamati, R. K. , Sinha, D. K. , Indraja, V. , and Krishna, V. H. , 2016, “ A Review on Small Scale Wind Turbines,” Renewable Sustainable Energy Rev., 56, pp. 1351–1371. [CrossRef]
Mayeed, M. S. , and Khalid, A. , 2015, “ Optimization of the Wind Turbine Designs for Areas With Low Wind Speeds,” ASME Paper No. ES2015-49052.
Mandelli, S. , Barbieri, J. , Mereu, R. , and Colombo, E. , 2016, “ Off-Grid Systems for Rural Electrification in Developing Countries: Definitions, Classification and a Comprehensive Literature Review,” Renewable Sustainable Energy Rev., 58, pp. 1621–1646. [CrossRef]
Battisti, L. , Zanne, L. , Dell'Anna, S. , Dossena, V. , Persico, G. , and Paradiso, B. , 2011, “ Aerodynamic Measurements on a Vertical Axis Wind Turbine in a Large Scale Wind Tunnel,” ASME J. Energy Resour. Technol., 133(3), p. 031201. [CrossRef]
Dossena, V. , Persico, G. , Paradiso, B. , Battisti, L. , Dell'Anna, S. , Brighenti, A. , and Benini, E. , 2015, “ An Experimental Study of the Aerodynamics and Performance of a Vertical Axis Wind Turbine in a Confined and Unconfined Environment,” ASME J. Energy Resour. Technol., 137(5), p. 051207. [CrossRef]
Persico, G. , Dossena, V. , Paradiso, B. , Battisti, L. , Brighenti, A. , and Benini, E. , 2017, “ Time-Resolved Experimental Characterization of the Wakes Shed by H-Shaped and Troposkien Vertical Axis Wind Turbines,” ASME J. Energy Resour. Technol., 139(3), p. 031203. [CrossRef]
Franco, J. A. , Jaureguil, J. C. , and Toledano-Ayala, M. , 2015, “ Optimizing Wind Turbine Efficiency by Deformable Structures in Smart Blades,” ASME J. Energy Resour. Technol., 137(5), p. 051206. [CrossRef]
Savonius, S. J. , 1925, The Wing Rotor in Theory and Practice, Savonius, Hämeenlinna, Finland.
Dwiyantoro, B. A. , Yuwono, T. , and Suphandani, V. , 2016, “ Structural Design Optimization of Vertical Axis Wind Turbine Type Darrieus-Savonius,” ARPN J. Eng. Appl. Sci., 11(2), pp. 1073–1077. http://www.arpnjournals.org/jeas/research_papers/rp_2016/jeas_0116_3456.pdf
Nagare, P. , Nair, A. , Shettigar, R. , Kale, P. , and Nambiar, P. , 2015, “ Vertical Axis Wind Turbine,” International Conference on Technologies for Sustainable Development (ICTSD), Mumbai, India, Feb. 4–6, Paper No. 7095839.
Thanigaivel, G. , 2015, “ Design and Analysis of Drag and Lift Vertical Axis Wind Turbine,” J. Chem. Pharm. Sci., 7, pp. 106–108. http://jchps.com/specialissues/Special%20issue%207/28%20MITNC-31%20Thanigaivel%20106-108.pdf
Bhuyan, S. , and Biswas, A. , 2014, “ Investigations on Self-Starting and Performance Characteristics of Simple H and Hybrid H-Savonius Vertical Axis Wind Rotors,” Energy Convers. Manage., 87, pp. 859–867. [CrossRef]
Paraschivoiu, I. , 2002, Wind Turbine Design With Emphasis on Darrieus Concept, Polytechnic International Press, Montreal, QC, Canada, Chap. 2.2.
Botrini, M. , 1982, “ Étude Aérodynamique d'une Éolienne Savonius,” MS thesis, I.M.S.T., Marseille, France.
Chauvin, A. , Botrini, M. , Brun, R. , and Beguier, C. , 1983, “ Évaluation du Coefficient de Puissance d'un Rotor Savonius,” C. R. Acad. Sci. Paris, 296(2), pp. 823–826.
Claveau, C. , Goujoin, R. , and Massart, S. , 1975, “ Étude d'une Éolienne,” E.N.I.C.A. Report, Toulouse, France.
Newman, B. , 1974, “ Measurements of Savonius Rotor With Variable Gap,” University of Sherbrooke Conference on Wind Energy, University of Sherbrooke, Sherbrooke, QC, Canada, p. 116.
Nguyen, D. , 1977, “ Colloque sur l’énergie au Sénégal,” École Polytechnique de Thiès, Thiès, Sénégal.
Albani, A. , and Ibrahim, M. Z. , 2013, “ Preliminary Development of Prototype of Savonius Wind Turbine for Application in Low Wind Speed in Kuala Terengganu,” Int. J. Sci. Technol. Res., 2(3), pp. 102–108. http://www.ijstr.org/final-print/mar2013/Preliminary-Development-Of-Prototype-Of-Savonius-Wind-Turbine-For-Application-In-Low-Wind-Speed-In-Kuala-Terengganu-Malaysia.pdf
Jeon, K. S. , Jeong, J. I. , Pan, J.-K. , and Ryu, K.-W. , 2015, “ Effects of End Plates With Various Shapes and Sizes on Helical Savonius Wind Turbines,” Renewable Energy, 79(1), pp. 167–176. [CrossRef]
Kamoji, M. A. , Kedare, S. B. , and Prabhu, S. V. , 2009, “ Experimental Investigations on Single Stage Modified Savonius Rotor,” Appl. Energy, 86(7–8), pp. 1064–1073. [CrossRef]
Mahmoud, N. H. , El-Haroun, A. A. , Wahba, E. , and Nasef, M. H. , 2012, “ An Experimental Study on Improvement of Savonius Rotor Performance,” Alexandria Eng. J., 51(1), pp. 19–25. [CrossRef]
Wenehenubun, F. , Saputra, A. , and Sutanto, H. , 2015, “ An Experimental Study on the Performance of Savonius Wind Turbines Related With the Number of Blades,” Energy Procedia, 68, pp. 297–304. [CrossRef]
Mao, Z. , and Tian, W. , 2015, “ Effect of the Blade Arc Angle on the Performance of a Savonius Wind Turbine,” Adv. Mech. Eng., 7(5), pp. 1–10. [CrossRef]
Al-Faruk, A. , and Sharifian, A. S. , 2015, “ Effects of Flow Parameters on the Performance of Vertical Axis Swirling Type Savonius Wind Turbine,” Int. J. Automot. Mech. Eng., 12(1), pp. 2929–2943. [CrossRef]
Samiran, N. A. , Wahab, A. A. , Mohd, S. , and Rosly, N. , 2014, “ Simulation Study on the Performance of Vertical Axis Wind Turbine,” Appl. Mech. Mater., 465–466, pp. 270–274.
Kamoji, M. A. , Kedare, S. B. , and Prabhu, S. V. , 2009, “ Performance Tests on Helical Savonius Rotors,” Renewable Energy, 34(3), pp. 521–529. [CrossRef]
Alvarez-Cedillo, J. A. , Olguín-Carbajal, M. , Herrera-Lozada, J. C. , Silva-Ortigoza, R. , and Sandoval-Gutiérrez, J. , 2015, “ Wind Flow Analysis of Twisted Savonius Micro-Turbine Array,” Comput. Sist., 19(3), pp. 601–608.
Zhu, J. , Liu, P. , Qu, Q. , and Ruan, H. , 2015, “ Experimental Investigation on Aerodynamic Performance of Helical Savonius Rotor,” J. Basic Sci. Eng., 23(5), pp. 1059–1067. http://caod.oriprobe.com/articles/47101444/Experimental_Investigation_on_Aerodynamic_Performance_of_Helical_Savon.htm
Lee, J.-H. , Lee, Y.-T. , and Lim, H.-C. , 2016, “ Effect of Twist Angle on the Performance of Savonius Wind Turbine,” Renewable Energy, 89, pp. 231–244. [CrossRef]
Altan, B. D. , and Atilgan, M. , 2008, “ An Experimental and Numerical Study on the Improvement of the Performance of Savonius Wind Rotor,” Energy Convers. Manage., 49(12), pp. 3425–3432. [CrossRef]
Altan, B. D. , Atilgan, M. , and Özdamar, A. , 2008, “ An Experimental Study on Improvement of a Savonius Rotor Performance With Curtaining,” Exp. Therm. Fluid Sci., 32(8), pp. 1673–1678. [CrossRef]
Tartuferi, M. , D'Alessandro, V. , Montelpare, S. , and Ricci, R. , 2015, “ Enhancement of Savonius Wind Rotor Aerodynamic Performance: A Computational Study of New Blade Shapes and Curtain Systems,” Energy, 79(C), pp. 371–384. [CrossRef]
Tesch, K. , Kludzinska, K. , and Doerffer, P. , 2015, “ Investigation of the Aerodynamics of an Innovative Vertical-Axis Wind Turbine,” Flow, Turbul. Combust., 95(4), pp. 739–754. [CrossRef]
Chen, C.-A. , Huang, T.-Y. , and Chen, C.-H. , 2015, “ Novel Plant Development of a Parallel Matrix System of Savonius Wind Rotors With Wind Deflector,” J. Renewable Sustainable Energy, 7(1), p. 013135. [CrossRef]
Ersoy, H. , and Yalcindag, S. , 2014, “ An Experimental Study on the Improvement of Savonius Turbine Performance Using Flexible Sails,” In. J. Green Energy, 11(8), pp. 796–807. [CrossRef]
Yang, B. , and Lawn, C. , 2011, “ Fluid Dynamic Performance of a Vertical Axis Turbine for Tidal Currents,” Renewable Energy, 36(12), pp. 3355–3366. [CrossRef]
Kacprzak, K. , and Sobczak, K. , 2015, “ Computational Assessment of the Influence of the Overlap Ratio on the Power Characteristics of a Classical Savonius Wind Turbine,” Open Eng., 5(1), pp. 314–322. [CrossRef]
Chen, L. , Chen, J. , Xu, H. , Yang, H. , Ye, C. , and Liu, D. , 2016, “ Wind Tunnel Investigation on the Two- and Three-Blade Savonius Rotor With Central Shaft at Different Gap Ratio,” J. Renewable Sustainable Energy, 8(1), p. 013303. [CrossRef]
Kacprzak, K. , Liskiewicz, G. , and Sobczak, K. , 2013, “ Numerical Investigation of Conventional and Modified Savonius Wind Turbines,” Renewable Energy, 60, pp. 578–585. [CrossRef]
Roy, S. , and Saha, U. K. , 2015, “ Wind Tunnel Experiments of a Newly Developed Two-Bladed Savonius-Style Wind Turbine,” Appl. Energy, 137, pp. 117–125. [CrossRef]
Gad, H. E. , Abd El-Hamid, A. A. , El-Askary, W. A. , and Nasef, M. H. , 2014, “ A New Design of Savonius Wind Turbine: Numerical Study,” CFD Lett., 6(4), pp. 144–158. http://www.issres.net/journal/index.php/cfdl/article/viewFile/S2180-1363%2814%296144/243
Tian, W. , Song, B. , Van Zwieten, J. H. , and Pyakurel, P. , 2015, “ Computational Fluid Dynamics Prediction of a Modified Savonius Wind Turbine With Novel Blade Shapes,” Energies, 8(8), pp. 7915–7929. [CrossRef]
Sheldahl, R. E. , Blackwell, B. F. , and Feltz, L. V. , 1977, “ Wind Tunnel Performance Data for Two- and Three-Bucket Savonius Rotors,” Sandia National Laboratory, Albuquerque, NM, Report No. SAND76-0131. http://www.vawt.om2cm.sk/sites/default/files/2or3savonius.pdf
Sheldahl, R. E. , Blackwell, B. F. , and Feltz, L. V. , 1978, “ Wind Tunnel Performance Data for Two- and Three-Bucket Savonius Rotors,” J. Energy, 2(3), pp. 160–164. [CrossRef]
Rogowski, K. , and Maroński, R. , 2015, “ CFD Computation of the Savonius Rotor,” J. Theor. Appl. Mech., 53(1), pp. 37–45. [CrossRef]
ANSYS, 2009, “ Ansys Fluent 12 Theory Guide,” ANSYS Inc., Canonsburg, PA.
ANSYS, 2009, “ Ansys Fluent 12 User's Guide,” ANSYS Inc., Canonsburg, PA.
Zadravec, M. , Basic, S. , and Hribersek, M. , 2007, “ The Influence of Rotating Domain Size in a Rotating Frame of Reference Approach for Simulation of Rotating Impeller in a Mixing Vessel,” J. Eng. Sci. Technol., 2(2), pp. 126–138. http://jestec.taylors.edu.my/Vol%202%20Issue%202%20August%2007/126-%20138%20Zadravec.pdf
Spalart, P. , and Allmaras, S. , 1992, “ A One-Equation Turbulence Model for Aerodynamic Flows,” AIAA Paper No. 1992-0439.
Ohya, Y. , Miyazaki, J. , Göltenbott, U. , and Watanabe, K. , 2017, “ Power Augmentation of Shrouded Wind Turbines in a Multirotor System,” ASME J. Energy Resour. Technol., 139(5), p. 051202. [CrossRef]
Rashidi, M. , Kadambi, J. R. , and Chinchore, A. , 2014, “ Computational Study of Savonius Wind Turbine,” ASME Paper No. IMECE2014-39595.
Jaohindy, P. , McTavish, S. , Garde, F. , and Bastide, A. , 2013, “ An Analysis of the Transient Forces Acting on Savonius Rotors With Different Aspect Ratios,” Renewable Energy, 55, pp. 286–295. [CrossRef]
Irabu, K. , and Roy, J. N. , 2011, “ Study of Direct Force Measurement and Characteristics on Blades of Savonius Rotor at Static State,” Exp. Therm. Fluid Sci., 35(4), pp. 653–659. [CrossRef]
Sawada, T. , Nakamura, M. , and Kamada, S. , 1986, “ Blade Force Measurement and Flow Visualization of Savonius Rotors,” BULL JSME, 29(253), pp. 2095–2100. [CrossRef]
El-Baz, A. R. , Youssef, K. , and Mohamed, M. H. , 2016, “ Innovative Improvement of a Drag Wind Turbine Performance,” Renewable Energy, 86, pp. 89–98. [CrossRef]
Shaheen, M. , El-Sayed, M. , and Abdallah, S. , 2015, “ Numerical Study of Two-Bucket Savonius Wind Turbine Cluster,” J. Wind Eng. Ind. Aerodyn., 137, pp. 78–89. [CrossRef]
Jang, C.-M. , Kim, Y.-G. , Kang, S.-K. , and Lee, J.-H. , 2016, “ An Experiment for the Effects of the Distance and Rotational Direction of Two Neighboring Vertical Savonius Blades,” Int. J. Energy Res., 40(5), pp. 632–638. [CrossRef]
Baz, A. M. , Mahmoud, N. A. , Hamed, A. M. , and Youssef, K. M. , 2015, “ Optimization of Two and Three Rotor Savonius Wind Turbine,” ASME Paper No. GT2015-43988.


Grahic Jump Location
Fig. 1

Geometry and boundaries of the 2D model

Grahic Jump Location
Fig. 2

Grid independence analysis—instant CT values versus rotor azimuth position (TSR = 1)

Grahic Jump Location
Fig. 3

Mesh quality rating

Grahic Jump Location
Fig. 4

CFD model compared to Sandia National Laboratory data

Grahic Jump Location
Fig. 5

Relative deviation of CFD model prediction from experimental data

Grahic Jump Location
Fig. 6

Spline20, β = 20 deg; spline30, β = 30 deg; and spline40, β = 40 deg

Grahic Jump Location
Fig. 7

Torque coefficient CT

Grahic Jump Location
Fig. 8

Power coefficient CP

Grahic Jump Location
Fig. 9

Relative performance improvement of spline-curved blades versus circular-shaped rotor

Grahic Jump Location
Fig. 10

Torque coefficient for circular and spline40 geometry as a function of rotor azimuth position (TSR = 1.0)

Grahic Jump Location
Fig. 11

Circular rotor; azimuth position: 0 deg; and TSR = 1.0

Grahic Jump Location
Fig. 12

Spline40 rotor; azimuth position: 0 deg; and TSR = 1.0

Grahic Jump Location
Fig. 13

Vorticity contour of circular (top) and spline40 (bottom) rotor; azimuth position: 0 deg; and TSR = 1.0

Grahic Jump Location
Fig. 14

Side (CFx), frontal (CFy), and resultant (CR) force coefficients of circular and spline40 rotor versus TSR

Grahic Jump Location
Fig. 15

Forces acting on rotor blades

Grahic Jump Location
Fig. 16

Semilog plot of the ratio of frontal forces at TSR 1.2

Grahic Jump Location
Fig. 17

Semilog plot of the ratio of side forces at TSR 1.2



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In