0
Research Papers: Fuel Combustion

Theoretical Prediction of the Effect of Blending JP-8 With Syngas on the Ignition Delay Time and Laminar Burning Speed

[+] Author and Article Information
Guangying Yu

Mechanical and Industrial
Engineering Department,
Northeastern University,
Boston, MA 02115
e-mail: yu.g@husky.neu.edu

Omid Askari

Mechanical Engineering Department,
Mississippi State University,
Starkville, MS 39762
e-mail: askari@me.msstate.edu

Hameed Metghalchi

Mechanical and Industrial
Engineering Department,
Northeastern University,
Boston, MA 02115
e-mail: metghalchi@coe.neu.edu

Contributed by the Advanced Energy Systems Division of ASME for publication in the JOURNAL OF ENERGY RESOURCES TECHNOLOGY. Manuscript received July 3, 2017; final manuscript received July 7, 2017; published online August 22, 2017. Special Editor: Reza Sheikhi.

J. Energy Resour. Technol 140(1), 012204 (Aug 22, 2017) (5 pages) Paper No: JERT-17-1327; doi: 10.1115/1.4037376 History: Received July 03, 2017; Revised July 07, 2017

A numerical study has been carried out to investigate the impact of adding syngas into JP-8 fuel. A new chemical mechanism has been assembled from existing mechanism of JP-8 and syngas and has been examined by comparing with the experimental data from literatures. The mechanism was then applied to Cantera zero-dimension constant internal energy and constant volume model and one-dimensional (1D) freely propagating flame model to calculate the ignition delay time and laminar burning speed, respectively. The simulations were carried out over a large range of temperature (700–1000 K), blending ratio (0–20% syngas), and H2/CO ratio (10/90 to 50/50). Simulation results showed that the blending syngas with JP-8 will slightly increase the ignition delay time and laminar burning speed.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Askari, O. , Elia, M. , Ferrari, M. , and Metghalchi, H. , 2017, “ Cell Formation Effects on the Burning Speeds and Flame Front Area of Synthetic Gas at High Pressures and Temperatures,” Appl. Energy, 189, pp. 568–577. [CrossRef]
Askari, O. , Wang, Z. , Vien, K. , Sirio, M. , and Metghalchi, H. , 2017, “ On the Flame Stability and Laminar Burning Speeds of Syngas/O2/He Premixed Flame,” Fuel, 190, pp. 90–103. [CrossRef]
Askari, O. , Vien, K. , Wang, Z. , Sirio, M. , and Metghalchi, H. , 2016, “ Exhaust Gas Recirculation Effects on Flame Structure and Laminar Burning Speeds of H2/CO/Air Flames at High Pressures and Temperatures,” Appl. Energy, 179, pp. 451–462. [CrossRef]
Askari, O. , Beretta, G. , Eisazadeh-Far, K. , and Metghalchi, H. , 2016, “ On the Thermodynamic Properties of Thermal Plasma in the Flame Kernel of Hydrocarbon/Air Premixed Gases,” Eur. Phys. J. D, 70(8), p. 159. [CrossRef]
Askari, O. , Moghaddas, A. , Alholm, A. , Vien, K. , Alhazmi, B. , and Metghalchi, H. , 2016, “ Laminar Burning Speed Measurement and Flame Instability Study of H2/CO/Air Mixtures at High Temperatures and Pressures Using a Novel Multi-Shell Model,” Combust. Flame, 168, pp. 20–31. [CrossRef]
Yu, G. , Askari, O. , Hadi, F. , Wang, Z. , Metghalchi, H. , Kannaiyan, K. , and Sadr, R. , 2016, “ Theoretical Prediction of Laminar Burning Speed and Ignition Delay Time of Gas-to-Liquid Fuel,” ASME J. Energy Resour. Technol., 139(2), p. 022202. [CrossRef]
Lenhert, D. B. , Miller, D. L. , and Cernansky, N. P. , 2007, “ The Oxidation of JP-8, Jet-A, and Their Surrogates in the Low and Intermediate Temperature Regime at Elevated Pressures,” Combust. Sci. Technol., 179(5), pp. 845–861. [CrossRef]
Kumar, K. , and Sung, C. , 2010, “ An Experimental Study of the Autoignition Characteristics of Conventional Jet Fuel/Oxidizer Mixtures: Jet-A and JP-8,” Combust. Flame, 157(4), pp. 676–685. [CrossRef]
Vasu, S. S. , Davidson, D. F. , and Hanson, R. K. , 2008, “ Jet Fuel Ignition Delay Times: Shock Tube Experiments Over Wide Conditions and Surrogate Model Predictions,” Combust. Flame, 152(1–2), pp. 125–143. [CrossRef]
Allen, C. , Valco, D. , Toulson, E. , Edwards, T. , and Lee, T. , 2013, “ Ignition Behavior and Surrogate Modeling of JP-8 and of Camelina and Tallow Hydrotreated Renewable Jet Fuels at Low Temperatures,” Combust. Flame, 160(2), pp. 232–239. [CrossRef]
Valco, D. , Gentz, G. , Allen, C. , Colket, M. , Edwards, T. , Gowdagiri, S. , Oehlschlaeger, M. , Toulson, E. , and Lee, T. , 2015, “ Autoignition Behavior of Synthetic Alternative Jet Fuels: An Examination of Chemical Composition Effects on Ignition Delays at Low to Intermediate Temperatures,” Proc. Combust. Inst., 35(3), pp. 2983–2991. [CrossRef]
Moghaddas, A. , Bennett, C. , Eisazadeh-Far, K. , and Metghalchi, H. , 2012, “ Measurement of Laminar Burning Speeds and Determination of Onset of Auto-Ignition of Jet-A/Air and Jet Propellant-8/Air Mixtures in a Constant Volume Spherical Chamber,” ASME J. Energy Resour. Technol., 134(2), p. 022205. [CrossRef]
Heneghan, S. P. , Locklear, S. L. , Geiger, D. L. I. , Anderson, S. D. , and Schulz, W. D. , 1993, “ Static Tests of Jet Fuel Thermal and Oxidative Stability,” J. Propul. Power, 9(1), pp. 5–9. [CrossRef]
Violi, A. , Yan, S. , Eddings, E. G. , Sarofim, A. F. , Granata, S. , Faravelli, T. , and Ranzi, E. , 2002, “ Experimental Formulation and Kinetic Model for JP-8 Surrogate Mixtures,” Combust. Sci. Technol., 174(11–12), pp. 399–417. [CrossRef]
Seshadri, K. , Frassoldati, A. , Cuoci, A. , Faravelli, T. , Niemann, U. , Weydert, P. , and Ranzi, E. , 2011, “ Experimental and Kinetic Modeling Study of Combustion of JP-8, Its Surrogates Andcomponents in Laminar Premixed Flows,” Combust. Theory Modell., 15(4), pp. 569–583. [CrossRef]
Montgomery, C. , Cannon, S. , Mawid, M. , and Sekar, B. , 2002, “ Reduced Chemical Kinetic Mechanisms for JP-8 Combustion,” AIAA Paper No. 2002-0336. https://doi.org/10.2514/6.2002-336
Tay, K. L. , Yang, W. , Mohan, B. , Zhou, D. , Yu, W. , and Zhao, F. , 2016, “ Development of a Reduced Kerosene–Diesel Reaction Mechanism With Embedded Soot Chemistry for Diesel Engines,” Fuel, 181, pp. 926–934. [CrossRef]
Aggarwal, S. , Helma, T. , and Li, D. , 2014, “ A Numerical Investigation on the Ignition of JP-8 Surrogates Blended With Hydrogen and Syngas,” Int. J. Adv. Eng. Sci. Appl. Math., 6(1–2), pp. 49–64. [CrossRef]
Beretta, G. P. , Keck, J. C. , Janbozorgi, M. , and Metghalchi, M. , 2012, “ The Rate-Controlled Constrained-Equilibrium Approach to Far-From-Local-Equilibrium Thermodynamics,” Entropy, 14(12), pp. 92–130. [CrossRef]
Ranzi, E. , Frassoldati, A. , Grana, R. , Cuoci, A. , Faravelli, T. , Kelley, A. P. , and Law, C. K. , 2012, “ Hierarchical and Comparative Kinetic Modeling of Laminar Flame Speeds of Hydrocarbon and Oxygenated Fuels,” Prog. Energy Combust. Sci., 38(4), pp. 468–501. [CrossRef]
Davis, S. G. , Joshi, A. V. , Wang, H. , and Egolfopoulos, F. , 2005, “ An Optimized Kinetic Model of H2/CO Combustion,” Proc. Combust. Inst., 30(1), pp. 1283–1292. [CrossRef]
Sangwan, M. , Yan, C. , Chesnokov, E. N. , and Krasnoperov, L. N. , 2015, “ Reaction CH3 + CH3 → C2H6 Studied Over the 292–714 K Temperature and 1–100 Bar Pressure Ranges,” J. Phys. Chem. A, 119(28), pp. 7847–7857. [CrossRef] [PubMed]
Yan, C. , Kocevska, S. , and Krasnoperov, L. N. , 2016, “ Kinetics of the Reaction of CH3O2 Radicals With OH Studied Over the 292–526 K Temperature Range,” J. Phys. Chem. A, 120(31), pp. 6111–6121. [CrossRef] [PubMed]
Hadi, F. , and Sheikhi, M. R. H. , 2015, “ A Comparison of Constraint and Constraint Potential Forms of the Rate-Controlled Constraint-Equilibrium Method,” ASME J. Energy Resour. Technol., 138(2), p. 022202. [CrossRef]
Hadi, F. , Janbozorgi, M. , Sheikhi, M. R. H. , and Metghalchi, H. , 2016, “ A Study of Interactions Between Mixing and Chemical Reaction Using the Rate-Controlled Constrained-Equilibrium Method,” J. Non-Equilib. Thermodyn., 41(4), pp. 257–278. [CrossRef]
Safari, M. , Hadi, F. , and Sheikhi, M. R. H. , 2014, “ Progress in the Prediction of Entropy Generation in Turbulent Reacting Flows Using Large Eddy Simulation,” Entropy, 16(10), pp. 5159–5177. [CrossRef]
Sheikhi, M. R. H. , Safari, M. , and Hadi, F. , 2015, “ Entropy Filtered Density Function for Large Eddy Simulation of Turbulent Flows,” AIAA J., 53(9), pp. 2571–2587. [CrossRef]
Keck, J. C. , 1990, “ Rate-Controlled Constrained-Equilibrium Theory of Chemical Reactions in Complex Systems,” Prog. Energy Combust. Sci., 16(2), pp. 125–154. [CrossRef]
Nicolas, G. , and Metghalchi, H. , 2016, “ Development of the Rate-Controlled Constrained-Equilibrium Method for Modeling of Ethanol Combustion,” ASME J. Energy Resour. Technol., 138(2), p. 022205. http://doi.org/10.1115/1.4031511
Hamiroune, D. , Bishnu, P. , Metghalchi, M. , and Keck, J. C. , 1998, “ Rate-Controlled Constrained Equilibrium Method Using Constraint Potentials,” Combust. Theory Modell., 2(1), pp. 81–94. [CrossRef]
Janbozorgi, M. , and Metghalchi, M. , 2012, “ Rate-Controlled Constrained-Equilibrium Modeling of H/O Reacting Nozzle Flow,” J. Propul. Power, 28(4), pp. 677–684. [CrossRef]
Janbozorgi, M. , Ugarte, S. , Metghalchi, M. , and Keck, J. C. , 2009, “ Combustion Modeling of Mono-Carbon Fuels Using the Rate-Controlled Constrained-Equilibrium Method,” Combust. Flame, 156(10), pp. 1871–1885. [CrossRef]
Keck, J. C. , and Gillespie, D. , 1971, “ Rate-Controlled Partial-Equilibrium Method for Treating Reacting Gas Mixtures,” Combust. Flame, 17(2), pp. 237–241. [CrossRef]
Beretta, G. P. , Janbozorgi, M. , and Metghalchi, H. , 2016, “ Degree of Disequilibrium Analysis for Automatic Selection of Kinetic Constraints in the Rate-Controlled Constrained-Equilibrium Method,” Combust. Flame, 168, pp. 342–364. [CrossRef]
Bishnu, P. S. , Hamiroune, D. , Metghalchi, M. , and Keck, J. C. , 1997, “ Constrained-Equilibrium Calculations for Chemical Systems Subject to Generalized Linear Constraints Using the NASA and STANJAN Equilibrium Programs,” Combust. Theory Modell., 1(3), pp. 295–312. [CrossRef]
Robert, L. , Metghalchi, M. , and Keck, J. C. , 1989, “ Rate-Controlled Constrained Equilibrium Calculation of Ignition Delay Times in Hydrogen-Oxygen Mixtures,” Symp. (Int.) Combust., 22(1), pp. 1705–1713. [CrossRef]
Petersen, E. L. , Kalitan, D. M. , Barrett, A. B. , Reehal, S. C. , Mertens, J. D. , Beerer, D. J. , Hack, R. L. , and McDonell, V. G. , 2007, “ New Syngas/Air Ignition Data at Lower Temperature and Elevated Pressure and Comparison to Current Kinetics Models,” Combust. Flame, 149(1–2), pp. 244–247. [CrossRef]
Parsinejad, F. , Keck, J. C. , and Metghalchi, H. , 2007, “ On the Location of Flame Edge in Shadowgraph Pictures of Spherical Flames: A Theoretical and Experimental Study,” Exp. Fluids, 43(6), pp. 887–894. [CrossRef]
Rahim, F. , Far, K. , Parsinejad, F. , Andrews, R. J. , and Metghalchi, H. , 2008, “ A Thermodynamic Model to Calculate Burning Speed of Methane-Air-Diluent Mixtures,” Int. J. Thermodyn., 11(4), pp. 151–160. http://dergipark.ulakbim.gov.tr/eoguijt/article/view/1034000223
Eisazadeh-Far, K. , Moghaddas, A. , Rahim, F. , and Metghalchi, H. , 2010, “ Burning Speed and Entropy Production Calculation of a Transient Expanding Spherical Laminar Flame Using a Thermodynamic Model,” Entropy, 12(12), pp. 2485–2496. [CrossRef]
Eisazadeh-Far, K. , Moghaddas, A. , Metghalchi, H. , and Keck, J. C. , 2011, “ The Effect of Diluent on Flame Structure and Laminar Burning Speeds of JP-8/Oxidizer/Diluent Premixed Flames,” Fuel, 90(4), pp. 1476–1486. [CrossRef]
Rokni, E. , Moghaddas, A. , Askari, O. , and Metghalchi, H. , 2014, “ Measurement of Laminar Burning Speeds and Investigation of Flame Stability of Acetylene (C2H2)/Air Mixtures,” ASME J. Energy Resour. Technol., 137(1), p. 012204. [CrossRef]
Askari, O. , Elia, M. , Ferrari, M. , and Metghalchi, H. , 2016, “ Auto-Ignition Characteristics Study of Gas-to-Liquid Fuel at High Pressures and Low Temperatures,” ASME J. Energy Resour. Technol., 139(1), p. 012204. [CrossRef]
Egolfopoulos, F. N. , and Law, C. K. , 1990, “ Chain Mechanisms in the Overall Reaction Orders in Laminar Flame Propagation,” Combust. Flame, 80(1), pp. 7–16. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Comparison of predicted ignition delay time for syngas with the experimental data of Petersen et al. [37], Davis et al. [21], and Ranzi et al. [20] mechanisms at a pressure of 20 atm, initial compostion of 7.33% H2, 9.71% CO, 1.98% CO2, 17.01% O2, and 63.97% N2

Grahic Jump Location
Fig. 2

Comparison of predicted ignition delay time of JP-8 with the experimental data [9] and Ranzi mechanism [20] at equivalence ratio of ϕ=1 and initial pressure of 20 atm

Grahic Jump Location
Fig. 3

Predicted ignition delay time of JP-8 and syngas mixture with different blending ratio at initial pressure of 20 atm and equivalence ratio of ϕ=1. The syngas has 10% H2 and 90% CO by volume.

Grahic Jump Location
Fig. 4

Ignition delay time of 90% JP-8 with 10% syngas at equivalence ratio of  ϕ=1 and p = 20 atm

Grahic Jump Location
Fig. 5

Predicted laminar burning speed of JP-8 and syngas mixture with temperature from 700 K to 900 K using present mechanism at a pressure of 10 atm and equivalence ratio of ϕ=1

Grahic Jump Location
Fig. 6

Predicted laminar burning speed with different H2/COblend ratio and different pressures at temperature of Tu=900 K, 80% JP-8, and 20% syngas in volume

Grahic Jump Location
Fig. 7

Laminar burning speed of different blend ratio mixtures. Syngas contains 10% H2 and 90% CO at temperature of Tu=900 K.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In