0
research-article

Thermodynamic Properties of Pure and Mixed Thermal Plasmas over a Wide Range of Temperature and Pressure

[+] Author and Article Information
Omid Askari

Mechanical Engineering Department, Mississippi State University, Starkville, MS 39762
askari@me.msstate.edu

1Corresponding author.

ASME doi:10.1115/1.4037688 History: Received July 10, 2017; Revised August 11, 2017

Abstract

Chemical composition and thermodynamics properties of different thermal plasmas are calculated in a wide range of temperatures and pressures. The calculation is performed in dissociation and ionization temperature ranges using statistical thermodynamic modeling. The thermodynamic properties are being considered in this study are enthalpy, entropy, Gibbs free energy, specific heat at constant pressure, specific heat ratio, speed of sound, mean molar mass, and degree of ionization. The calculations have been done for seven pure plasmas such as hydrogen, helium, carbon, nitrogen, oxygen, neon and argon. In this study, the Debye-Hukel cutoff criterion in conjunction with the Griem's self-consistent model are applied for terminating the electronic partition function series and to calculate the reduction of the ionization potential. The Rydberg and Ritz extrapolation laws have been used for energy levels which are not observed in tabulated data. Two different methods called complete chemical equilibrium and progressive methods are presented to find the composition of available species. The calculated pure plasma properties are then presented as functions of temperature and pressure, in terms of a new set of thermodynamically self-consistent correlations for efficient use in CFD simulations. The results have been shown excellent agreement with literature. The results from pure plasmas are then used as a reliable reference source to calculate the thermodynamic properties of any arbitrary plasma mixtures having elemental atoms of H, He, C, N, O, Ne and Ar in their chemical structure. This alternative method is only valid for high temperature thermal plasmas.

Copyright (c) 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In