0
Review Article

Review of Wind Turbine Research in 21st Century

[+] Author and Article Information
Ryoichi S. Amano

Life Fellow ASME
Department of Mechanical Engineering,
University of Wisconsin-Milwaukee,
115 E. Reindl Way,
Glendale, WI 53212
e-mail: amano@uwm.edu

Contributed by the Advanced Energy Systems Division of ASME for publication in the JOURNAL OF ENERGY RESOURCES TECHNOLOGY. Manuscript received August 21, 2017; final manuscript received August 22, 2017; published online September 11, 2017. Editor: Hameed Metghalchi.

J. Energy Resour. Technol 139(5), 050801 (Sep 11, 2017) (8 pages) Paper No: JERT-17-1454; doi: 10.1115/1.4037757 History: Received August 21, 2017; Revised August 22, 2017

Wind energy is a well proven and cost-effective technology and expected to be a promising technology in which industry responds to the environmental targets—so becoming an important source of power generation in years to come. This paper focuses on the current status of wind energy and more advanced subjects needed to understand the current technology in the wind power engineering.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Gupta, A. K. , 2015, “ Efficient Wind Energy Conversion: Evolution to Modern Design,” ASME J. Energy Resour. Technol., 137(5), p. 051201. [CrossRef]
Baranowski, R., Oteri, F., Baring-Gould, I., and Tegen, S., 2013, “ Utility-Scale Land-Based 80-Meter Wind Maps,” Wind Power America, accessed Sept. 5, 2017, http://www.fourcornerswind.org/resources
Dunne, D., 2017, “ The World's Biggest Wind Turbine: Stunning Images Show the Monster Structure Bigger Than the London Eye With Blades That are 80 Metres Long,” Daisy Dunne for Mailonline, Daily Mail, London, accessed Sept. 6, 2017, http://www.dailymail.co.uk/sciencetech/article-4342966/Wind-turbine-world-s-biggest-722-feet.html#ixzz4ps FIw0We
Fried, L., 2012, “ GWEC Global Wind Statistics 2012,” Global Wind Energy Council, Brussels, Belgium, accessed Sept. 5, 2017, https://www.gwec.net/wp-content/uploads/2013/02/GWEC-PRstats-2012_english.pdf
Dumblauskas, S., 2010, “ BTM Forecasts 340-GW of Wind Energy by 2013,” AWEA Offshore Wind Power, accessed Sept. 5, 2017, http://www.renewableenergyworld.com/articles/2009/03/btm-forecasts-340-gw-of-wind-by-2013.html
Schreck, S., Lundquist, J., and Shaw, W., 2008, “Research Needs for Wind Resource Characterization,” National Renewable Energy Laboratory, Golden, CO, Technical Report No. NREL/TP-500-43521. https://www.nrel.gov/docs/fy08osti/43521.pdf
Blair, N., 2017, “Geospatial Data Science Publications,” National Renewable Energy Laboratory, Golden, CO (permission for citation granted).
Laxson, A., Hand, M., and Blair, N., 2006, “High Wind Penetration Impact on U.S. Wind Manufacturing Capacity and Critical Resources,” National Renewable Energy Laboratory, Golden, CO, Technical Report No. NREL/TP-500, 40482.
Dossena, V. , Persico, G. , Paradiso, B. , Battisti, L. , Dell'Anna, S. , Brighenti, A. , and Benini, E. , 2015, “ An Experimental Study of the Aerodynamics and Performance of a Vertical Axis Wind Turbine in a Confined and Unconfined Environment,” ASME J. Energy Resour. Technol., 137(5), p. 051207. [CrossRef]
Ferreira, C. J. S. , Bijl, H. , van Bussel, G. , and van Kulik, G. , “ Simulating Dynamic Stall in a 2D VAWT: Modeling Strategy, Verification and Validation With Particle Image Velocimetry Data,” J. Phys.: Conf. Ser., 75(1), p. 012023.
Matt, A. , Strong, S. , ElGammal, T. , and Amano, R. , 2015, “ Development of Novel Self-Healing Polymer Composites for Use in Wind Turbine Blades,” ASME J. Energy Resour. Technol., 137(5), p. 051202.
Huang, C.-Y. , Trask, R. S. , and Bond, I. P. , 2010, “ Characterization and Analysis of Carbon Fibre-Reinforced Polymer Composite Laminates With Embedded Circular Vasculature,” J. R. Soc. Interface, 7(49), pp. 1229–1241. [CrossRef] [PubMed]
Motuku, M. , Vaidya, U. K. , and Janowski, G. M. , 1999, “ Parametric Studies on Self-Repairing Approaches for Resin Infused Composites Subjected to Low Velocity Impact,” Smart Mater. Struct., 8, pp. 623–638.
Matt, A. K. K. , Beyhaghi, S. , Amano, R. S. , and Guo, J. , 2017, “ Self-Healing of Wind Turbine Blades Using Microscale Vascular Vessels,” ASME J. Energy Resour. Technol., 139(5), p. 051208. [CrossRef]
Franco, J. A. , Jauregui, J. C. , and Toledano-Ayala, M. , 2015, “ Optimizing Wind Turbine Efficiency by Deformable Structures in Smart Blades,” ASME J. Energy Resour. Technol., 137(5), p. 051206. [CrossRef]
Beyhaghi, S. , and Amano, R. S. , 2017, “ Improvement of Aerodynamic Performance of Cambered Airfoils Using Leading-Edge Slots,” ASME J. Energy Resour. Technol., 139(5), p. 051204. [CrossRef]
Beyhaghi, S. , and Amano, R. S. , 2017, “ Investigation of Flow Over an Airfoil Using a Hybrid Detached Eddy Simulation–Algebraic Stress Turbulence Model,” ASME J. Energy Resour. Technol., 139(5), p. 051206. [CrossRef]
Ibrahim, M. , Alsultan, A. , Shen, S. , and Amano, R. S. , 2015, “ Advances in Horizontal Axis Wind Turbine Blade Designs: Introduction of Slots and Tubercle,” ASME J. Energy Resour. Technol., 137(5), p. 051205. [CrossRef]
Jackson, R. S. , and Amano, R. , 2017, “ Experimental Study and Simulation of a Small-Scale Horizontal-Axis Wind Turbine,” ASME J. Energy Resour. Technol., 139(5), p. 051207. [CrossRef]
Okulov, V. L., Mikkelsen, R., Sørensen, J. N. , Naumov, I. V. , and Tsoy, M. A. , 2017, “ Power Properties of Two Interacting Wind Turbine Rotors,” ASME J. Energy Resour. Technol., 139(5), p. 051210. [CrossRef]
AlSam, A. , Szasz, R. , and Revstedt, J. , 2015, “ The Influence of Sea Waves on Offshore Wind Turbine Aerodynamics,” ASME J. Energy Resour. Technol., 137(5), p. 051209. [CrossRef]
AlSam, A. , Szasz, R. , and Revstedt, J. , 2017, “ Wind–Wave Interaction Effects on a Wind Farm Power Production,” ASME J. Energy Resour. Technol., 139(5), p. 051213. [CrossRef]
Crespo, A. , Hernandez, J. , and Frandsen, S. , 1999, “ Survey of Modeling Methods for Wind Turbine Wakes and Wind Farms,” Wind Energy, 2(1), pp. 1–24. [CrossRef]
Vermeer, L. , Sorenson, J. , and Crespo, A. , 2003, “ Wind Turbine Wake Aerodynamics,” Prog. Aerosp. Sci., 39, pp. 467–510. [CrossRef]
Hansen, M. , Sorensen, J. , Voutsinas, S. , Sorensen, N. , and Madsen, H. A. , 2006, “ State of the Art in Wind Turbine Aerodynamics and Aeroelasticity,” Prog. Areosp. Sci., 42(4), pp. 285–330. [CrossRef]
Sanderse, B. , van der Pijl, S. , and Koren, B. , 2011, “ Review of Computational Fluid Dynamics for Wind Turbine Wake Aerodynamics,” Wind Energy, 14(7), pp. 799–819. [CrossRef]
Hyvärinen, A. , and Segalini, A. , 2017, “ Effects From Complex Terrain on Wind-Turbine Performance,” ASME J. Energy Resour. Technol., 139(5), p. 051205. [CrossRef]
Hattori, H. , Houra, T. , Kono, A. , and Yoshikawa, S. , 2017, “ Computational Fluid Dynamics Study for Improvement of Prediction of Various Thermally Stratified Turbulent Boundary Layers,” ASME J. Energy Resour. Technol., 139(5), p. 051209. [CrossRef]
Uemura, Y. , Tanabe, Y. , Mamori, H. , Fukushima, N. , and Yamamoto, M. , 2017, “ Wake Deflection in Long Distance From a Yawed Wind Turbine,” ASME J. Energy Resour. Technol., 139(5), p. 051212. [CrossRef]
Wahlquist, C. , 2015, “ Wind Farm Study Finds ‘No Direct Evidence’ They Affect Health,” Wind Power, Xinjiang, China, accessed Sept. 5, 2017, https://www.theguardian.com/environment/2015/feb/11/wind-farm-study-finds-no-direct-evidence-they-affect-health
Marini, M. , Baccoli, R. , Mastino, C. C. , Bella, A. D. , Bernardini, C. , and Masullo, M. , 2017, “ Assessment of the Noise Generated by Wind Turbines at Low Frequencies,” ASME J. Energy Resour. Technol., 139(5), p. 051215. [CrossRef]
Ohya, Y. , Miyazaki, J. , Göltenbott, U. , and Watanabe, K. , 2017, “ Power Augmentation of Shrouded Wind Turbines in a Multirotor System,” ASME J. Energy Resour. Technol., 139(5), p. 051202. [CrossRef]
Musial, W. , and Ram, B. , 2010, “ Large-Scale Offshore Wind Power in the United States,” National Renewable Energy Laboratory, Golden, CO, Report No. NREL/TP-500-40745. https://www.nrel.gov/docs/fy10osti/40745.pdf
Kraemer, S. , 2010, “ Innowind and Hexicon Create Powerful Modular Wind+Wave Farms,” Blue Living Ideas, Blue Living Ideas, Direct Relief, accessed Sept. 9, 2017, http://bluelivingideas.com/2010/04/02/innowind-hexicon-create-powerful-modular-wind-farms/
Esteban, M. D. , López-Gutiérrez, J.-S. , Negro, V. , Matutano, C. , García-Flores, F. M. , and Millán, M. Á. , 2015, “ Offshore Wind Foundation Design: Some Key Issues,” ASME J. Energy Resour. Technol., 137(5), p. 051211.
Sato, Y. , Ohya, Y. , Kyozuka, Y. , and Tsutsumi, T. , 2014, “ The Floating Offshore Wind Turbine With PC Floating Structure—Hakata Bay Floating Offshore Wind Turbine,” Japan Prestressed Concrete Institute, Japan, accessed Aug. 19, 2017, http://www.jpci.or.jp/NR/pdf/44.pdf
Pallarol, J. G. , Sundén, B. , and Wu, Z. , 2014, “ On Ice Accretion for Wind Turbines and Influence of Some Parameters,” Aerodynamics of Wind Turbines: Emerging Topics, R. S. Amano and B. Sunden , eds., WIT Press, Southampton, UK. [CrossRef]
Walsh, M. , 2010, “ Accretion and Removal of Wind Turbine Icing in Polar Conditions,” Master thesis, Aalto University, Helsinki, Finland.
Sunden, B. , and Wu, Z. , 2015, “ On Icing and Icing Mitigation of Wind Turbine Blades in Cold Climate,” ASME J. Energy Resour. Technol., 137(5), p. 051203. [CrossRef]
Sunden, B. , and Wu, Z. , 2017, “ On Heat Transfer Issues for Wind Energy Systems,” ASME J. Energy Resour. Technol., 139(5), p. 051201. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Global cumulative installed wind capacity 2001–2016 [3]. Permission granted by Lasma Livzeniece of GWEC.

Grahic Jump Location
Fig. 2

U.S. wind map [7]. Permission granted by Nate Blair of National Renewable Energy Laboratory.

Grahic Jump Location
Fig. 3

Comparison of turbine blades with major aircrafts

Grahic Jump Location
Fig. 5

Microstructure of vascular tube reinforcement [11]

Grahic Jump Location
Fig. 6

Tubercle wind turbine blade [18]

Grahic Jump Location
Fig. 7

Wind farm photo in Edwards Air Force Base

Grahic Jump Location
Fig. 8

Wind farm on complex terrain [27]

Grahic Jump Location
Fig. 9

Lens wind turbine of Kyushu University

Grahic Jump Location
Fig. 10

Floating wind turbine station [34]. Permission granted by GWEC.

Grahic Jump Location
Fig. 11

Floating wind turbines developed by Professor Y. Ohya's group at Kyushu University [36]

Grahic Jump Location
Fig. 12

Floating wind turbine [1]

Grahic Jump Location
Fig. 13

De-icing technology. Permission granted by GWEC.

Grahic Jump Location
Fig. 14

Heating element for de-icing [39,40]

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In