0
Research Papers: Energy Systems Analysis

Free-Piston Linear Generator and the Development of a Solid Lubrication System

[+] Author and Article Information
Roman Virsik

Mem. ASME
German Aerospace Center (DLR),
Institute of Vehicle Concepts,
Pfaffenwaldring 38-40,
Stuttgart 70569, Germany
e-mail: roman.virsik@dlr.de

Frank Rinderknecht

German Aerospace Center (DLR),
Institute of Vehicle Concepts,
Pfaffenwaldring 38-40,
Stuttgart 70569, Germany
e-mail: frank.rinderknecht@dlr.de

Horst E. Friedrich

German Aerospace Center (DLR),
Institute of Vehicle Concepts,
Pfaffenwaldring 38-40,
Stuttgart 70569, Germany
e-mail: horst.friedrich@dlr.de

Contributed by the Advanced Energy Systems Division of ASME for publication in the JOURNAL OF ENERGY RESOURCES TECHNOLOGY. Manuscript received February 24, 2017; final manuscript received October 6, 2017; published online November 28, 2017. Assoc. Editor: Esmail M. A. Mokheimer.

J. Energy Resour. Technol 140(3), 032007 (Nov 28, 2017) (7 pages) Paper No: JERT-17-1097; doi: 10.1115/1.4038463 History: Received February 24, 2017; Revised October 06, 2017

The free-piston linear generator (FPLG) is a new electromechanical generator. It converts chemical energy into electrical energy by means of a combustion process, a linear generator, and a gas spring. The FPLG does not use any crankshaft, which is responsible for a lot of losses. Thereby, the technology aims to have better properties than other electromechanical generators: higher efficiency over wide range of operating points, better noise–vibration–harshness package. This publication deals with the explanation of the concept, the characteristics of a FPLG, and one of the challenges in the development. In order to use a port scavenging, the emission issue is the challenge and has to be solved. One possible solution is the use of solid lubricants to substitute motor oil. On this way, the development methodology and one aspect of the development is explained.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Metz, B. , Davidson, O. R. , Bosch, P. R. , Dave, R. , and Meyer, L. A. , 2007, Climate Change 2007: Mitigation of Climate Change, Cambridge University Press, Cambridge, UK.
Wong, K. , and Dia, S. , 2017, “ Nanotechnology in Batteries,” ASME J. Energy Resour. Technol., 139(1), p. 014001.
Kock, F. , Heron, A. , Rinderknecht, F. , and Friedrich, H. E. , 2013, “ The Free-Piston Linear Generator Potentials and Challenges,” MTZ, 74(10), pp. 38–43.
Ferrari, C. , 2012, “ Entwicklung und Untersuchung eines Freikolbenlineargeneratorsystems unter besonderer Berücksichtigung des verbrennungsmotorischen Teilsystems mit Hilfe eines neuartigen vollvariablen Prüfstands,” Ph.D. thesis, German Aerospace Center, Cologne, Germany.
Maurya, R. K. , and Agarwal, A. K. , 2014, “ Combustion and Emission Characterization of n-Butanol Fueled HCCI Engine,” ASME J. Energy Resour. Technol., 137(1), p. 011101.
Yanai, T. , Han, X. , Reader, G. T. , Zheng, M. , and Tjong, J. , 2014, “ Preliminary Investigation of Direct Injection Neat n-Butanol in a Diesel Engine,” ASME J. Energy Resour. Technol., 137(1), p. 012205.
Ferrari, C. , Offinger, S. , Schier, M. , Philipps, F. , Widenhorn, A. , Henke, M. , Philipp, U. , Wolany, A. , Rinderknecht, F. , and Reichert, S. , 2012, “ Studie Zu Range Extender Konzepten Für Den Einsatz in Einem Batterieelektrischen Fahrzeug—REXEL,” DLR, Hacker Media, Stuttgart, Germany.
Pohl, S. E. , 2007, “ Der Freikolbenlineargenerator—Theoretische Betrachtungen des Gesamtsystems und experimentelle Untersuchungen zum Teilsystem der Gasfeder,” Ph.D. thesis, German Aerospace Center, Cologne, Germany.
Dorsch, M. , Neumann, J. , and Hasse, C. , 2016, “ Application of a Phenomenological Model for the Engine-Out Emissions of Unburned Hydrocarbons in Driving Cycles,” ASME J. Energy Resour. Technol., 138(2), p. 022201.
Cheng, C. , Kharazmi, A. , and Schock, H. , 2014, “ Three Dimensional Piston Ring-Cylinder Bore Contact Modeling,” ASME Paper No. ICEF2014-5672.
Hilscher, G. , 2009, “ Der Gegenkolbenmotor verdiente eine Renaissance,” Net J., 14(3/4), pp. 4–8.

Figures

Grahic Jump Location
Fig. 1

Illustration of the principle of the FPLG

Grahic Jump Location
Fig. 2

FPLG systems: (a) dual module system and (b) opposed piston combustion system

Grahic Jump Location
Fig. 3

Cylinder liner new (top) and after 6 h (bottom)

Grahic Jump Location
Fig. 4

Pressure ring, sealing ring, and a guide ring

Grahic Jump Location
Fig. 5

Joint of a carbon sealing ring

Grahic Jump Location
Fig. 6

Piston with carbon ring packet

Grahic Jump Location
Fig. 7

Test bench for carbon piston rings

Grahic Jump Location
Fig. 8

Cylinder liner with ports in a test bench

Grahic Jump Location
Fig. 9

New carbon ring segment

Grahic Jump Location
Fig. 10

Carbon ring segments after 6 h (from guide ring and pressure ring)

Grahic Jump Location
Fig. 11

Piston ring measured by confocal microscope

Grahic Jump Location
Fig. 12

Broken ring packet

Grahic Jump Location
Fig. 13

Broken sealing ring

Grahic Jump Location
Fig. 14

Ring contact surface

Grahic Jump Location
Fig. 15

Second generation of piston rings

Grahic Jump Location
Fig. 16

Piston rings after the test runs

Grahic Jump Location
Fig. 17

Piston ring surface

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In