0
Research Papers: Energy Systems Analysis

Simulation of Cogeneration-Combined Cycle Plant Flexibilization by Thermochemical Energy Storage

[+] Author and Article Information
Michael Angerer

Department of Mechanical Engineering,
Institute for Energy Systems,
Technical University of Munich,
Boltmannstr, 15,
Garching 85748, Germany
e-mail: michael.angerer@tum.de

Michael Djukow

Department of Mechanical Engineering,
Institute for Energy Systems,
Technical University of Munich,
Garching 85748, Germany
e-mail: michael.djukow@tum.de

Karsten Riedl

Uniper Technologies GmbH,
Gelsenkirchen 45896, Germany
e-mail: karsten.riedl@uniper.energy

Stephan Gleis

Department of Mechanical Engineering,
Institute for Energy Systems,
Technical University of Munich,
Garching 85748, Germany
e-mail: stephan.gleis@tum.de

Hartmut Spliethoff

Department of Mechanical Engineering,
Institute for Energy Systems,
Technical University of Munich,
Garching 85748, Germany
e-mail: spliethoff@tum.de

1Corresponding author.

Contributed by the Advanced Energy Systems Division of ASME for publication in the JOURNAL OF ENERGY RESOURCES TECHNOLOGY. Manuscript received January 18, 2017; final manuscript received October 16, 2017; published online January 23, 2018. Assoc. Editor: Tatiana Morosuk.

J. Energy Resour. Technol 140(2), 020909 (Jan 23, 2018) (12 pages) Paper No: JERT-17-1027; doi: 10.1115/1.4038666 History: Received January 18, 2017; Revised October 16, 2017

In the course of the “Energiewende,” the German electricity market is undergoing major changes. The state-aided priority of renewable generation has led to a significant decline in electricity prices. This reduces the profit margin of cogeneration units and increases the necessity of flexible operation to avoid electricity production when spot prices drop below marginal costs. In this work, a 100 MWel combined-cycle (CC) power plant supplying heat and power to a paper mill is investigated. Currently, the plant is operated heat-controlled and is therefore unable to react to changing electricity spot prices. With the integration of heat storage, the plant is enabled to switch to power-controlled mode. To evaluate the technical impact of the storage, the plant and a thermochemical MgO/Mg(OH)2 storage are modeled using the stationary process simulation tool ebsilon professional. Different operation modes are investigated and results are used to derive a mixed integer linear programming (MILP) model to optimize the operation of the plant/storage system. Using this method, the overall economic impact of the storage on the plant operation is quantified.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Bundestag, 2011, “13. Gesetz zur Änderung des Atomgesetzes,” Bundeshaus, Bonn, Germany.
Bundestag, 2011, “Gesetz zur Neuregelung des Rechtsrahmens für die Förderung der Stromerzeugung aus erneuerbaren Energien,” Bundeshaus, Bonn, Germany.
Bundestag, 2016, “Gesetz für den Ausbau erneuerbarer Energien,” ErneuerbareEnergien-Gesetz (EEG 2017), Bundeshaus, Bonn, Germany.
Buttler, A. , Hentschel, J. , Kahlert, S. , and Angerer, M. , 2015, “Statusbericht Flexibiltätsbedarf im Stromsektor.”
EPEX Spot, 2017, “ EPEX Spot,” EPEX Spot, Paris, France, accessed Dec. 18, 2017, https://www.epexspot.com/en/
Hentschel, J. , Babić, U. , and Spliethoff, H. , 2016, “ A Parametric Approach for the Valuation of Power Plant Flexibility Options,” Energy Rep., 2, pp. 40–47.
Deutsche Energie Agentur, 2014, “dena-Studie Systemdienstleistungen 2030: Sicherheit und Zuverlässigkeit einer Stromversorgung mit hohem Anteil erneuerbarer Energien,” Deutsche Energie-Agentur GmbH, Berlin.
Gores, S. , Harthan, R. O. , Hauke, H. , Loreck, C. , and Matthes, F. C. , 2013, “Perspektiven der Kraft-WärmeKopplung im Rahmen der Energiewende,” Öko-Institut e.V., Berlin.
N-ERGIE, 2016, “Wärmespeicher der N-ERGIE erfüllt die Erwartungen,” N-ERGIE, Nuremberg, Germany.
Stadwerke Potsdam, 2016, “Neuer Wärmespeicher ist ein wichtiger Beitrag für den Klimaschutz,” Stadtwerke Potsdam Gmbh, Potsdam, Germany.
MVV Energie, 2013, “Neuer Fernwärmespeicher wird ins Netz eingebunden,” MVV Energie AG, Mannheim, Germany.
George, A. , 2005, “Commitment Techniques for Combined-Cycle Generating Units,” CEA Technologies Inc., Montreal, QC, Canada.
Thorin, E. , Brand, H. , and Weber, C. , 2005, “ Long-Term Optimization of Cogeneration Systems in a Competitive Market Environment,” Appl. Energy, 81(2), pp. 152–169. [CrossRef]
Senjyu, T. , Miyagi, T. , Ahmedyousuf, S. , Urasaki, N. , and Funabashi, T. , 2007, “ A Technique for Unit Commitment With Energy Storage System,” Int. J. Electr. Power Energy Syst., 29(1), pp. 91–98. [CrossRef]
Tveit, T.-M. , Savola, T. , Gebremedhin, A. , and Fogelholm, C.-J. , 2009, “ Multi-Period MINLP Model for Optimising Operation and Structural Changes to CHP Plants in District Heating Networks With Long-Term Thermal Storage,” Energy Convers. Manage., 50(3), pp. 639–647. [CrossRef]
Christidis, A. , Koch, C. , Pottel, L. , and Tsatsaronis, G. , 2012, “ The Contribution of Heat Storage to the Profitable Operation of Combined Heat and Power Plants in Liberalized Electricity Markets,” Energy, 41(1), pp. 75–82. [CrossRef]
Mollenhauer, E. , Christidis, A. , and Tsatsaronis, G. , 2016, “ Evaluation of an Energy- and Exergy-Based Generic Modeling Approach of Combined Heat and Power Plants,” Int. J. Energy Environ. Eng., 7(2), pp. 167–176. [CrossRef]
Yokoyama, R. , and Ito, K. , 1996, “ Operational Strategy of a Cogeneration System Under a Complex Utility Rate Structure,” ASME J. Energy Resour. Technol., 118(4), pp. 256–262.
Yokoyama, R. , and Ito, K. , 1999, “ Optimal Operation of a Gogeneration Plant in Consideration of Equipment Startup/Shutdown Cost,” ASME J. Energy Resour. Technol., 121(4), pp. 254–261.
Lehmann, B. , 1986, “Die Pufferspeicherung thermischer Energie mittels der Wärmetönung des Systems Calciumoxid/Calciumhydroxid,” Ph.D. thesis, Kernforschungszentrum Karlsruhe, Karlsruhe, Germany.
Kato, Y. , Yamashita, N. , Kobayashi, K. , and Yoshizawa, Y. , 1996, “ Kinetic Study of the Hydration of Magnesium Oxide for a Chemical Heat Pump,” Appl. Therm. Eng., 16(11), pp. 853–862. [CrossRef]
Kato, Y. , Harada, N. , and Yoshizawa, Y. , 1999, “ Kinetic Feasibility of a Chemical Heat Pump for Heat Utilization of High-Temperature Processes,” Appl. Therm. Eng., 19(3), pp. 239–254. [CrossRef]
Criado, Y. A. , Alonso, M. , and Abanades, J. C. , 2014, “ Kinetics of the CaO/Ca(OH)2 Hydration/Dehydration Reaction for Thermochemical Energy Storage Applications,” Ind. Eng. Chem. Res., 53(32), pp. 12594–12601. [CrossRef]
Criado, Y. A. , Alonso, M. , Abanades, J. C. , and Anxionnaz-Minvielle, Z. , 2014, “ Conceptual Process Design of a CaO/Ca(OH)2 Thermochemical Energy Storage System Using Fluidized Bed Reactors,” Appl. Therm. Eng., 73(1), pp. 1085–1092. [CrossRef]
Pardo, P. , Deydier, A. , Anxionnaz-Minvielle, Z. , Rougé, S. , Cabassud, M. , and Cognet, P. , 2014, “ A Review on High Temperature Thermochemical Heat Energy Storage,” Renewable Sustainable Energy Rev., 32, pp. 591–610. [CrossRef]
Schmidt, M. , Gutierrez, A. , and Linder, M. , 2017, “ Thermochemical Energy Storage With CaO/Ca(OH)2—Experimental Investigation of the Thermal Capability at Low Vapor Pressures in a Lab Scale Reactor,” Appl. Energy, 188, pp. 672–681. [CrossRef]
Huggins, R. A. , 2010, Energy Storage, Springer, New York. [CrossRef]
Dinçer, İ. , and Rosen, M. A. , 2011, Thermal Energy Storage: Systems and Applications, 2nd ed., Wiley, Hoboken, NJ.
Arjmand, M. , Liu, L. , and Neretnieks, I. , 2013, “ Exergetic Efficiency of High-Temperature-Lift Chemical Heat Pump (CHP) Based on CaO/CO2 and CaO/H2O Working Pairs,” Int. J. Energy Res., 37(9), pp. 1122–1131. [CrossRef]
Lin, S. , Wang, Y. , and Suzuki, Y. , 2009, “ High-Temperature CaO Hydration/Ca(OH)2 Decomposition Over a Multitude of Cycles,” Energy Fuels, 23(6), pp. 2855–2861. [CrossRef]
Pardo, P. , Anxionnaz-Minvielle, Z. , Rougé, S. , Cognet, P. , and Cabassud, M. , 2014, “ Ca(OH)2/CaO Reversible Reaction in a Fluidized Bed Reactor for Thermochemical Heat Storage,” Sol. Energy, 107, pp. 605–616. [CrossRef]
Schaube, F. , Koch, L. , Wörner, A. , and Müller-Steinhagen, H. , 2012, “ A Thermodynamic and Kinetic Study of the De- and Rehydration of Ca(OH)2 at High H2O Partial Pressures for Thermo-Chemical Heat Storage,” Thermochim. Acta, 538, pp. 9–20. [CrossRef]
Barin, I. , 1993, Thermochemical Data of Pure Substances, Wiley, Weinheim, Germany. [CrossRef]
Hartman, M. , Trnka, O. , and Veselý, V. , 1994, “ Thermal Dehydration of Magnesium Hydroxide and Sintering of Nascent Magnesium Oxide,” AIChE J., 40(3), pp. 536–542. [CrossRef]
NIST, “NIST Chemistry WebBook: NIST Standard Reference Database Number 69,” National Institute of Standards and Technology, Gaithersburg, MD.
Steag AG, 2015, “EBSILON Professional Dokumentation,” STEAG Energy Services GmbH, Essen, Germany.
Wang, L. , Yang, Y. , Dong, C. , Morosuk, T. , and Tsatsaronis, G. , 2014, “ Systematic Optimization of the Design of Steam Cycles Using MINLP and Differential Evolution,” ASME J. Energy Resour. Technol., 136(3), p. 031601. [CrossRef]
Szega, M. , and Żymełka, P. , 2017, “ Thermodynamic and Economic Analysis of the Production of Electricity, Heat and Cold in the Combined Heat and Power Unit With the Absorption Chillers,” ASME J. Energy Resour. Technol., 140(5), p. 052002.
Herrmann, S. , Kahlert, S. , Wuerth, M. , and Spliethoff, H. , 2017, “ Thermo-Economic Evaluation of Novel Flexible CAES/CCPP Concept,” ASME J. Energy Resour. Technol., 139(1), p. 011902. [CrossRef]
Mathworks, “MATLAB,” The Mathworks Inc., Natick, MA.
VTU Energy, “Gas Turbine Library,” VTU Energy, Raaba-Grambac, Austria. http://www.vtu-energy.com/en/leistungen/Gasturbinen-Bibliothek.php
Steiner, P. , Schwaiger, K. , Walter, H. , and Haider, M. , 2016, “Active Fluidized Bed Technology Used for Thermal Energy Storage,” ASME Paper No. ES2016-59053.
Kunii, D. , and Levenspiel, O. , 1991, Fluidization Engineering, 2nd ed., Butterworth-Heinemann, Oxford, UK.
Layden, G. K. , and Brindley, G. W. , 1963, “ Kinetics of Vapor-Phase Hydration of Magnesium Oxide,” J. Am. Ceram. Soc., 46(11), pp. 518–522. [CrossRef]
Bratton, R. J. , and Brindley, G. W. , 1965, “ Kinetics of Vapor Phase Hydration of Magnesium Oxide—II: Dependence on Temperature and Water Vapor Pressure,” Trans. Faraday Soc., 61(509), pp. 1017–1025. [CrossRef]
Halikia, I. , and Economacou, A. , 1993, “ Application of Various Methods of Nonisothermal Kinetic Analysis to Magnesium Hydroxide Decomposition,” Int. J. Chem. Kinet., 25(8), pp. 609–631. [CrossRef]
Halikia, I. , Neou-Syngouna, P. , and Kolitsa, D. , 1998, “ Isothermal Kinetic Analysis of the Thermal Decomposition of Magnesium Hydroxide Using Thermogravimetric Data,” Thermochim. Acta, 320(1–2), pp. 75–88. [CrossRef]
Nahdi, K. , Rouquerol, F. , and Trabelsi Ayadi, M. , 2009, “ Mg(OH)2 Dehydroxylation: A Kinetic Study by Controlled Rate Thermal Analysis (CRTA),” Solid State Sci., 11(5), pp. 1028–1034. [CrossRef]
Ren, H. , Chen, Z. , Wu, Y. , Yang, M. , Chen, J. , Hu, H. , and Liu, J. , 2014, “ Thermal Characterization and Kinetic Analysis of Nesquehonite, Hydromagnesite, and Brucite, Using TG-DTG and DSC Techniques,” J. Therm. Anal. Calorim., 115(2), pp. 1949–1960. [CrossRef]
Ishitobi, H. , Uruma, K. , Takeuchi, M. , Ryu, J. , and Kato, Y. , 2013, “ Dehydration and Hydration Behavior of Metal-Salt-Modified Materials for Chemical Heat Pumps,” Appl. Therm. Eng., 50(2), pp. 1639–1644. [CrossRef]
Steck, M. , 2012, “Entwicklung und Bewertung von Algorithmen zur Einsatzplanerstellung virtueller Kraftwerke,” Ph.D. thesis, TU München, Munich, Germany.
EEX, 2017, “EEX European Commission Allowance,” European Energy Exchange AG, Leipzig, Germany, accessed Dec. 18, 2017, https://www.eex.com/en/market-data/environmental-markets/spot-market/european-emission-allowances#!/2017/12/18
EEX, 2017, “Natural Gas Daily Reference Price PEGAS,” European Energy Exchange AG, Leipzig, Germany, accessed Dec. 18, 2017, https://www.eex.com/en/market-data/natural-gas/spot-market/daily-reference-price#!/2017/07/03
Vanessa Grimm, 2007, “Einbindung von Speichern für erneuerbare Energien in die Kraftwerkseinsatzplanung—Einfluss auf die Strompreise der Spitzenlast,” Ph.D. thesis, Ruhr-Universität Bochum, Bochum, Germany.

Figures

Grahic Jump Location
Fig. 1

Installed capacity in the German power grid over the last 25 years, adopted from Ref. [4]

Grahic Jump Location
Fig. 2

Flow sheet of a simple natural gas CC plant: 1—gas turbine with generator, 2—feed water tank, 3—feed water pump, 4—HRSG (with economizer, evaporator, and superheater), 5—steam turbine and generator, and 6—condenser

Grahic Jump Location
Fig. 3

Pressure dependence of the chemical equilibrium for reaction (1). Data from Ref. [22].

Grahic Jump Location
Fig. 4

ebsilon professional model of the CC cogeneration plant

Grahic Jump Location
Fig. 5

Storage configuration for charging mode with tanks

Grahic Jump Location
Fig. 6

Flow sheet for charging of the storage. 100% of the live steam are used in the storage, therefore the steam turbine is not shown.

Grahic Jump Location
Fig. 7

Configuration of the storage for discharge

Grahic Jump Location
Fig. 8

Division of the plant into three units (combustion unit, extraction unit, and storage unit) for the MILP model. Time-dependent boundary conditions are EPEX prices and heat demand by the paper mill.

Grahic Jump Location
Fig. 9

Results of the process simulation validation

Grahic Jump Location
Fig. 10

Heat flows for normal operation, storage charging operation, and storage discharging operation for a heat demand of 83 MW by the paper mill: (a) normal operation, (b) charge, and (c) discharge

Grahic Jump Location
Fig. 11

Distribution of the heat transferred from the live steam to the storage material

Grahic Jump Location
Fig. 12

Dispatch scheme for the plant with storage in a weak in January 2014. For high electricity prices the plant is operated in normal mode (blue spheres) generating as much power as possible, at medium prices, the storage is charged (green diamonds) and at very low prices the plant is shut down (orange squares) if the storage load is sufficient to supply the paper mill with heat.

Grahic Jump Location
Fig. 13

Plant operation strategy for the complete year 2014. Each data point corresponds to 1 h of operation.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In