Review Article

Four Decades of Research Into the Augmentation Techniques of Savonius Wind Turbine Rotor

[+] Author and Article Information
Nur Alom

Department of Mechanical Engineering,
National Institute of Technology Meghalaya,
Shillong 793003, India
e-mail: nuralomme19@gmail.com

Ujjwal K. Saha

Department of Mechanical Engineering,
Indian Institute of Technology Guwahati,
Guwahati 781039, India
e-mail: saha@iitg.ernet.in

Contributed by the Advanced Energy Systems Division of ASME for publication in the JOURNAL OF ENERGY RESOURCES TECHNOLOGY. Manuscript received November 5, 2017; final manuscript received December 11, 2017; published online January 22, 2018. Assoc. Editor: Esmail M. A. Mokheimer.

J. Energy Resour. Technol 140(5), 050801 (Jan 22, 2018) (14 pages) Paper No: JERT-17-1620; doi: 10.1115/1.4038785 History: Received November 05, 2017; Revised December 11, 2017

The design and development of wind turbines is increasing throughout the world to offer electricity without paying much to the global warming. The Savonius wind turbine rotor, or simply the Savonius rotor, is a drag-based device that has a relatively low efficiency. A high negative torque produced by the returning blade is a major drawback of this rotor. Despite having a low efficiency, its design simplicity, low cost, easy installation, good starting ability, relatively low operating speed, and independency to wind direction are its main rewards. With the goal of improving its power coefficient (CP), a considerable amount of investigation has been reported in the past few decades, where various design modifications are made by altering the influencing parameters. Concurrently, various augmentation techniques have also been used to improve the rotor performance. Such augmenters reduce the negative torque and improve the self-starting capability while maintaining a high rotational speed of the rotor. The CP of the conventional Savonius rotors lie in the range of 0.12–0.18, however, with the use of augmenters, it can reach up to 0.52 with added design complexity. This paper attempts to give an overview of the various augmentation techniques used in Savonius rotor over the last four decades. Some of the key findings with the use of these techniques have been addressed and makes an attempt to highlight the future direction of research.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Jian, C. , Kumbernuss, J. , Linhua, Z. , Lin, L. , and Hongxing, Y. , 2012, “ Influence of Phase-Shift and Overlap Ratio on Savonius Wind Turbine's Performance,” ASME J. Sol. Energy Eng., 134(1), p. 011016. [CrossRef]
Zhou, T. , and Rempfer, D. , 2013, “ Numerical Study of Detailed Flow Field and Performance of Savonius Wind Turbines,” Renewable Energy, 51, pp. 373–381. [CrossRef]
Modi, V. , and Fernando, M. , 1989, “ On the Performance of the Savonius Wind Turbine,” ASME J. Sol. Energy Eng., 111(1), pp. 71–81. [CrossRef]
Hayashi, T. , Li, Y. , and Hara, Y. , 2005, “ Wind Tunnel Tests on a Different Phase Three-Stage Savonius Rotor,” JSME Int. J. Ser. B, 48(1), pp. 9–16. [CrossRef]
Tummala, A. , Velamati, R. K. , Sinha, D. K. , Indraja, V. , and Krishna, V. H. , 2016, “ A Review on Small Scale Wind Turbines,” Renewable Sustainable Energy Rev., 56, pp. 1351–1371. [CrossRef]
Damak, A. , Driss, Z. , and Abid, M. S. , 2013, “ Experimental Investigation of Helical Savonius Rotor With a Twist of 180 deg,” Renewable Energy, 52, pp. 136–142. [CrossRef]
Fujisawa, N. , and Gotoh, F. , 1994, “ Experimental Study on the Aerodynamic 548 Performance of a Savonius Rotor,” ASME J. Sol. Energy Eng., 116(3), pp. 148–152. [CrossRef]
Shikha , Bhatti, T. S. , and Kothari, D. P. , 2003, “ Wind Energy Conversion Systems as a Distributed Source of Generation,” J. Energy Eng., 129(3), pp. 69–80. [CrossRef]
Mohamed, M. H. , Janiga, G. , Pap, E. , and Thévenin, D. , 2010, “ Optimization of Savonius turbines Using an Obstacle Shielding the Returning Blade,” Renewable Energy, 35(11), pp. 2618–2626.
Altan, B. D. , and Atilgan, M. , 2010, “ The Use of a Curtain Design to Increase the Performance Level of a Savonius Wind Rotors,” Renewable Energy, 35(4), pp. 821–829. [CrossRef]
Abraham, J. P. , Plourde, B. D. , Mowry, G. S. , Minkowycz, W. J. , and Sparrow, E. M. , 2012, “ Summary of Savonius Wind Turbine Development and Future Applications for Small-Scale Power Generation,” J. Renewable Sustainable Energy, 4(4), p. 042703.
Amano, R. S. , 2017, “ Review of Wind Turbine Research in 21st Century,” ASME J. Energy Resour. Technol., 139(5), p. 050801. [CrossRef]
Dossena, V. , Persico, G. , Paradiso, B. , Battisti, L. , Dell'Anna, S. , Brighenti, A. , and Benini, E. , 2015, “ An Experimental Study of the Aerodynamics and Performance of a Vertical Axis Wind Turbine in a Confined and Unconfined Environment,” ASME J. Energy Resour. Technol., 137(5), p. 051207. [CrossRef]
Roy, S. , Mukherjee, P. , and Saha, U. K. , 2014, “ Aerodynamic Performance Evaluation of Novel Savonius-Style Wind Turbine Under Oriented Jet,” ASME Paper No. GTINDIA2014-8152.
El-Askary, W. A. , Nasef, M. H. , AbdEL-hamid, A. A. , and Gad, H. E. , 2015, “ Harvesting Wind Energy for Improving Performance of Savonius Rotor,” J. Wind Eng. Ind. Aerodyn., 139, pp. 8–15. [CrossRef]
Wong, K. H. , Chong, W. T. , Sukiman, N. L. , Poh, S. C. , Shiah, Y.-C. , and Wang, C.-T. , 2017, “ Performance Enhancements on Vertical Axis Wind Turbines Using Flow Augmentation Systems: A Review,” Renewable Sustainable Energy Rev., 73, pp. 904–921. [CrossRef]
Akwa, J. V. , Vielmo, H. A. , and Petry, A. P. , 2012, “ A Review on the Performance of Savonius Wind Turbines,” Renewable Sustainable Energy Rev., 16(5), pp. 3054–3064. [CrossRef]
Roy, S. , and Saha, U. K. , 2013, “ Review of Experimental Investigations Into the Design, Performance and Optimization of the Savonius Rotor,” Proc. Inst. Mech. Eng. Part A: J. Power Energy, 227(4), pp. 528–542. [CrossRef]
Savonius, S. J. , 1930, “ The S-Rotor and Its Applications,” Mech. Eng., 53(5), pp. 333–338. https://www.scopus.com/record/display.uri?eid=2-s2.0-0000730199&origin=inward&txGid=ddc8fb48a96a176cedac67a404b75f42
Modi, V. J. , Roth, N. J. , and Fernando, M. S. U. K. , 1984, “ Optimum-Configuration Studies and Prototype Design of a Wind-Energy-Operated Irrigation System,” J. Wind Eng. Ind. Aerodyn., 16(1), pp. 85–96. [CrossRef]
Shaughnessy, B. M. , and Probert, S. D. , 1992, “ Partially-Blocked Savonius Rotor,” Appl. Energy, 43(4), pp. 239–249. [CrossRef]
Promdee, C. , and Photong, C. , 2016, “ Effects of Wind Angles and Wind Speeds on Voltage Generation of Savonius Wind Turbine With Double Wind Tunnels,” Procedia Comput. Sci., 86, pp. 401–404. [CrossRef]
Kacprzak, K. , Liskiewicz, G. , and Sobczak, K. , 2013, “ Numerical Investigation of Conventional and Modified Savonius Wind Turbines,” Renewable Energy, 60, pp. 578–585. [CrossRef]
Benesh, A. H. , Ave, S. A. , and Dak, P. S. , 1996, “ Wind Turbine With Savonius-Type Rotor,” U.S. Patent No. 5494407 A. https://www.google.ch/patents/US5494407
Grinspan, A. S. , Saha, U. K. , and Mahanta, P. , 2004, “ Experimental Investigation of Twisted Bladed Savonius Wind Turbine Rotor,” Int. Energy J., 5(1), pp. 1–9. http://www.rericjournal.ait.ac.th/index.php/reric/article/view/142
Banerjee, A. , Roy, S. , Mukherjee, P. , and Saha, U. K. , 2014, “ Unsteady Flow Analysis Around an Elliptic-Bladed Savonius-Style Wind Turbine,” ASME Paper No. GTINDIA2014-8141.
Alom, N. , Kolaparthi, S. C. , Gadde, S. C. , and Saha, U. K. , 2016, “ Aerodynamic Design Optimization of Elliptical-Bladed Savonius-Style Wind Turbine by Numerical Simulations,” ASME Paper No. OMAE2016-55095.
Song, L. , Yang, Z.-X. , Deng, R.-T. , and Yang, X.-G. , 2013, “ Performance and Structure Optimization for a New Type of Vertical Axis Wind Turbine,” International Conference on Advanced Mechatronic Systems (ICAMechS), Luoyang, China, Sept. 25–27, pp. 687–692.
Gerardo, G. , and Molfino, R. , 2014, “ From Savonius to Bronzinus: A Comparison Among Vertical Wind Turbines,” Energy Procedia, 50, pp. 10–18. [CrossRef]
Tartuferi, M. , Alessandro, V. D. , Montelpare, S. , and Ricci, R. , 2015, “ Enhancement of Savonius Wind Rotor Aerodynamic Performance: A Computational Study of New Blade Shapes and Curtain Systems,” Energy, 79, pp. 371–384. [CrossRef]
Sharma, S. , and Sharma, R. K. , 2017, “ CFD Investigation to Quantify the Effect of Layered Multiple Miniature Blades on the Performance of Savonius Rotor,” Energy Convers. Manage, 144, pp. 275–285. [CrossRef]
Sharma, S. , and Sharma, R. K. , 2016, “ Performance Improvement of Savonius Rotor Using Multiple Quarter Blades—A CFD Investigation,” Energy Convers. Manage, 127, pp. 43–54. [CrossRef]
Mari, M. , Venturini, M. , and Beyene, A. , 2017, “ A Novel Geometry for Vertical Axis Wind Turbines Based on the Savonius Concept,” ASME J. Energy Resour. Technol., 139(6), p. 061202.
Derakhshan, S. , Tavaziani, A. , and Kasaeian, N. , 2015, “ Numerical Shape Optimization of a Wind Turbine Blades Using Artificial Bee Colony Algorithm,” ASME J. Energy Resour. Technol., 137(5), p. 051210. [CrossRef]
Fujisawa, N. , Ishimatsu, K. , and Kage, K. , 1995, “ A Comparative Study of Navier-Stokes Calculations and Experiments for the Savonius Rotor,” ASME J. Sol. Energy Eng., 117(4), pp. 344–346. [CrossRef]
D'Alessandro, V. , Montelpare, S. , Ricci, R. , and Secchiaroli, A. , 2010, “ Unsteady Aerodynamics of a Savonius Wind Rotor: A New Computational Approach for the Simulation of Energy Performance,” Energy, 35(8), pp. 3349–3363. [CrossRef]
Emmanuel, B. , and Jun, W. , 2011, “ Numerical Study of a Six-Bladed Savonius Wind Turbine,” ASME J. Sol. Energy Eng., 133(4), p. 044503. [CrossRef]
Irabu, K. , and Roy, J. N. , 2011, “ Study of Direct Force Measurement and Characteristics on Blades of Savonius Rotor at Static State,” Exp. Therm. Fluid Sci., 35(4), pp. 653–659. [CrossRef]
Coughtrie, A. R. , Borman, D. J. , and Sleigh, P. A. , 2013, “ Effects of Turbulence Modelling on Prediction of Flow Characteristics in a Bench-Scale Anaerobic Gas-Lift Digester,” Bioresour. Technol., 138, pp. 297–306. [CrossRef] [PubMed]
Gupta, A. K. , 2015, “ Efficient Wind Energy Conversion: Evolution to Modern Design,” ASME J. Energy Resour. Technol., 137(5), p. 051201. [CrossRef]
Baz, A. M. , Mahmoud, N. A. , Hamed, A. M. , and Youssef, K. M. , 2016, “ Optimization of Two and Three Rotor Savonius Wind Turbine,” ASME Paper No. GT2015-43988.
Caboni, M. , Sergio Campobasso, M. , and Minisci, E. , 2016, “ Wind Turbine Design Optimization Under Environmental Uncertainty,” ASME J. Eng. Gas Turbines Power, 138(8), p. 082601. [CrossRef]
Frikha, S. , Driss, Z. , Ayadi, E. , Masmoudi, Z. , and Abid, M. S. , 2016, “ Numerical and Experimental Characterization of Multi-Stage Savonius Rotors,” Energy, 114, pp. 382–404. [CrossRef]
Gad-el-Hak, M. , 2016, “ Nine Decades of Fluid Mechanics,” ASME J. Fluids Eng., 138(10), p. 100802.
Ducoin, A. , Shadloo, M. S. , and Roy, S. , 2017, “ Direct Numerical Simulation of Flow Instabilities Over Savonius Style Wind Turbine Blades,” Renewable Energy, 105, pp. 374–385. [CrossRef]
Alexander, A. J. , and Holownia, B. P. , 1978, “ Wind Tunnel Tests on a Savonius Rotor,” J. Wind Eng. Ind. Aerodyn., 3(4), pp. 343–351. [CrossRef]
Ogawa, T. , Yoshida, H. , and Yokota, Y. , 1989, “ Development of Rotational Speed Control Systems for a Savonius-Type Wind Turbine,” ASME J. Fluids Eng., 111(1), pp. 53–58. [CrossRef]
Van Treuren, K. W. , 2015, “ Small-Scale Wind Turbine Testing in Wind Tunnels Under Low Reynolds Number Conditions,” ASME J. Energy Resour. Technol., 137(5), p. 051208. [CrossRef]
Ohya, Y. , Miyazaki, J. , Göltenbott, U. , and Watanabe, K. , 2017, “ Power Augmentation of Shrouded Wind Turbines in a Multirotor System,” ASME J. Energy Resour. Technol, 139(5), pp. 51202–51212. [CrossRef]
Gupta, R. , Biswas, A. , and Sharma, K. K. , 2008, “ Comparative Study of a Three-Bucket Savonius Rotor With a Combined Three-Bucket Savonius-Three-Bladed Darrieus Rotor,” Renewable Energy, 33(9), pp. 1974–1981. [CrossRef]
Dobrev, I. , and Massouh, F. , 2011, “ CFD and PIV Investigation of Unsteady Flow Through Savonius Wind Turbine,” Energy Procedia, 6, pp. 711–720. [CrossRef]
Naccache, G. , and Paraschivoiu, M. , 2017, “ Development of the Dual Vertical Axis Wind Turbine Using CFD,” ASME J. Fluids Eng., 139(12), p. 121105.
Alejandro Franco, J. , Carlos Jauregui, J. , Carbajal, A. , and Toledano-Ayala, M. , 2017, “ Shape Morphing Mechanism for Improving Wind Turbines Performance,” ASME J. Energy Resour. Technol., 139(5), p. 051214. [CrossRef]
Walker, J. F. , and Jenkins, N. , 1997, Wind Energy Technology, Wiley, Chichester, UK.
Morcos, S. M. , Khalafallah, M. G. , and Heikel, H. A. , 1981, “ The Effect of Shielding on the Aerodynamic Performance of Savonius Wind Turbines,” 16th Intersociety Energy Conversion Engineering Conference, Atlanta, GA, Aug. 9–14, pp. 2037–2040. http://adsabs.harvard.edu/abs/1981iece.conf.2037M
Ogawa, T. , and Yoshida, H. , 1986, “ Effects of a Deflecting Plate and Rotor End Plates on Performance of Savonius Type Wind Turbine,” Bull. JSME, 29(253), pp. 2115–2121. [CrossRef]
Huda, M. D. , Selim, M. A. , Islam, A. K. M. S. , and Islam, M. Q. , 1992, “ The Performance of an S-Shaped Savonius Rotor With a Deflecting Plate,” RERIC Int. Energy J., 14(1), pp. 25–32.
Reupke, P. , and Probert, S. D. , 1991, “ Slatted-Blade Savonius Wind-Rotors,” Appl. Energy, 40(1), pp. 65–75. [CrossRef]
Menet, J. L. , 2004, “ A Double-Step Savonius Rotor for Local Production of Electricity: A Design Study,” Renewable Energy, 29(11), pp. 1843–1862. [CrossRef]
Rajkumar, M. J. , and Saha, U. K. , 2006, “ Valve-Aided Twisted Savonius Rotor,” Wind Eng., 30(3), pp. 243–254. [CrossRef]
Hu, Y. , Tong, Z. , and Wang, S. , 2009, “ A New Type of VAWT and Blade Optimization,” International Technology Innovation Conference (ITIC), Xian, China, Oct. 12–14, pp. 1–5.
Golecha, K. , Eldho, T. I. , and Prabhu, S. V. , 2011, “ Influence of the Deflector Plate on the Performance of Modified Savonius Water Turbine,” Appl. Energy, 88(9), pp. 3207–3217. [CrossRef]
Mohamed, M. H. , Janiga, G. , Pap, E. , and Thévenin, D. , 2011, “ Optimal Blade Shape of a Modified Savonius Turbine Using an Obstacle Shielding the Returning Blade,” Energy Convers. Manage, 52(1), pp. 236–242. [CrossRef]
Tabassum, S. A. , and Probert, S. D. , 1987, “ Vertical-Axis Wind Turbine: A Modified Design,” Appl. Energy, 28(1), pp. 59–67. [CrossRef]
Saha, U. K. , Thotla, S. , and Maity, D. , 2008, “ Optimum Design Configuration of Savonius Rotor Through Wind Tunnel Experiments,” J. Wind Eng. Ind. Aerodyn., 96(8–9), pp. 1359–1375. [CrossRef]
Kamoji, M. A. , Kedare, S. B. , and Prabhu, S. V. , 2009, “ Performance Tests on Helical Savonius Rotors,” Renewable Energy, 34(3), pp. 521–529. [CrossRef]
Lee, J. H. , Lee, Y. T. , and Lim, H. C. , 2016, “ Effect of Twist Angle on the Performance of Savonius Wind Turbine,” Renewable Energy, 89, pp. 231–244. [CrossRef]
Irabu, K. , and Roy, J. N. , 2007, “ Characteristics of Wind Power on Savonius Rotor Using a Guide-Box Tunnel,” Exp. Therm. Fluid Sci., 32(2), pp. 580–586. [CrossRef]
Altan, B. D. , and Atilgan, M. , 2008, “ An Experimental and Numerical Study on the Improvement of the Performance of Savonius Wind Rotor,” Energy Convers. Manage, 49(12), pp. 3425–3432. [CrossRef]
Plourde, B. , Abraham, J. , Mowry, G. , and Minkowycz, W. , 2012, “ Simulations of Three-Dimensional Vertical-Axis Turbines for Communications Applications,” Wind Eng., 36(4), pp. 443–454. [CrossRef]
Alom, N. , and Saha, U. K. , 2016, “ Numerical Optimization of Semicircular-Bladed Savonius Rotor Using Vent Augmenters,” Asian Congress on Gas Turbines, Mumbai, India, Nov. 14–16, Paper No. ACGT2016.
Kamoji, M. A. , Kedare, S. B. , and Prabhu, S. V. , 2008, “ Experiments Investigations on Single Stage, Two Stages and Three Stages Conventional Savonius Rotor,” Int. J. Energy Res., 32(10), pp. 877–895. [CrossRef]
Roy, S. , and Saha, U. K. , 2013, “ Review on the Numerical Investigations Into the Design and Development of Savonius Wind Rotors,” Renewable Sustainable Energy Rev., 24, pp. 73–83. [CrossRef]
Kang, C. , Liu, H. , and Yang, X. , 2014, “ Review of Fluid Dynamics Aspects of Savonius-Rotor-Based Vertical-Axis Wind Rotors,” Renewable Sustainable. Energy Rev., 33, pp. 499–508. [CrossRef]
Song, C. , Zheng, Y. , Zhao, Z. , Zhang, Y. , Li, C. , and Jiang, H. , 2015, “ Investigation of Meshing Strategies and Turbulence Models of Computational Fluid Dynamics Simulations of Vertical Axis Wind Turbines,” J. Renewable Sustainable Energy, 7(3), p. 033111.
Balduzzi, F. , Bianchini, A. , Maleci, R. , Ferrara, G. , and Ferrari, L. , 2014, “ Blade Design Criteria to Compensate the Flow Curvature Effects in H-Darrieus Wind Turbines,” ASME J. Turbomach., 137(1), p. 011006. [CrossRef]
Uemura, Y. , Tanabe, Y. , Mamori, H. , Fukushima, N. , and Yamamoto, M. , 2017, “ Wake Deflection in Long Distance From a Yawed Wind Turbine,” ASME J. Energy Resour. Technol., 139(5), p. 051212.
Rahman, M. , Morshed, K. N. , Lewis, J. , and Fuller, M. , 2009, “ Experimental and Numerical Investigations on Drag and Torque Characteristics of Three-Bladed Savonius Wind Turbine,” ASME Paper No. IMECE2009-10838.
Ferdoues, M. S. , Ebrahimi, S. , and Vijayaraghavan, K. , 2017, “ Multi-Objective Optimization of the Design and Operating Point of a New External Axis Wind Turbine,” Energy, 125, pp. 643–653. [CrossRef]
Castelli, M. R. , and Benini, E. , 2012, “ Effect of Blade Inclination Angle on a Darrieus Wind Turbine,” ASME J. Turbomach., 134(3), p. 031016. [CrossRef]


Grahic Jump Location
Fig. 1

Various blade profiles used for Savonius rotors: (a) semicircular (1929), (b) semicircular (1930), (c) Bach (1931), (d) Benesh (1988), (e) Benesh (1996), (f) twisted (2004), (g) elliptical (2013), (h) fish-ridged rotor (2013), (i) modified Bach (2014), (j) Roy profile (2014), (k) Bronzinus (2014), (l) airfoil shape (2015), (m) multiple quarter semicircular (2016) (n) multiple miniature semicircular (2017), and (o) spline (2017)

Grahic Jump Location
Fig. 2

Basic parameters of Savonius rotor

Grahic Jump Location
Fig. 3

Lift and drag force on Savonius rotor

Grahic Jump Location
Fig. 4

Various types of augmentation techniques: (a) wind shields [46], (b) wind shields [55], (c) defector plate [56], (d) slatted blade [58], (e) V-shaped defelector [21], (f) nozzle [8], (g) multistaging [59], (h) twisted blades [25], (i) valve [60], (j) circular windshield [61], (k) curtain plates [10], (l) obstacle shield [9], (m) deflector plate [62], (n) shield [37], (o) venting slots [11], (p) concentartors [14], (q) guide vane [15], and (r) conveyor–deflector curtain [30]

Grahic Jump Location
Fig. 5

CP versus TSR for obstacle and without obstacle [9]

Grahic Jump Location
Fig. 6

CP versus TSR for various deflector azimuthal angle [47]

Grahic Jump Location
Fig. 7

CP versus TSR for various flaps [58]

Grahic Jump Location
Fig. 8

Static torque versus angle of rotation for various flaps [64]

Grahic Jump Location
Fig. 9

CP versus various deflector plate angle [21]

Grahic Jump Location
Fig. 10

CP versus velocity for various configuration [65]

Grahic Jump Location
Fig. 11

Revolution per minute versus velocity for various gap width of twisted bladed rotor [25]

Grahic Jump Location
Fig. 12

CP versus velocity for various valve-aided Savonius rotor [65]

Grahic Jump Location
Fig. 13

Power versus RPM for various curtain design [10]

Grahic Jump Location
Fig. 14

Variation of CP with TSR for various rotor configurations [37]

Grahic Jump Location
Fig. 15

Variation of power versus wind speeds for a vented and capped rotor [11]

Grahic Jump Location
Fig. 16

Vents at three different positions on the semicircular-bladed profiles [71]: (a) design-I, (b) design-II, and (c) design-III

Grahic Jump Location
Fig. 17

Variation of CP with TSR [71]

Grahic Jump Location
Fig. 18

Velocity contour of the conventional Savonius rotor [71]: (a) design-II with slots and (b) design without slots

Grahic Jump Location
Fig. 19

Orientation of the concentrators [14]

Grahic Jump Location
Fig. 20

CP versus TSR at various orientations of the concentrators [14]

Grahic Jump Location
Fig. 21

Different guide vane designs by El-Askary et al. [15]: (a) design-I, (b) design-II, and (c) design-III

Grahic Jump Location
Fig. 22

CP versus TSR for various guide vane position [15]




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In