0
Design Innovation Paper: Design Innovation Papers

Carbon Nanotube Production From Ethylene in CO2/N2 Environments

[+] Author and Article Information
Chuanwei Zhuo

Mechanical and Industrial Engineering,
Northeastern University,
Boston, MA 02115;
Business and Technology Center,
Cabot Corporation,
Billerica, MA 01821

Henning Richter

Materials Synthesis Research,
Nano-C, Inc.,
Boston, MA 02115

Yiannis A. Levendis

Mechanical and Industrial Engineering,
Northeastern University,
Boston, MA 02115
e-mail: y.levendis@neu.edu

1Corresponding author.

Contributed by the Advanced Energy Systems Division of ASME for publication in the JOURNAL OF ENERGY RESOURCES TECHNOLOGY. Manuscript received January 18, 2018; final manuscript received February 2, 2018; published online March 30, 2018. Editor: Hameed Metghalchi.

J. Energy Resour. Technol 140(8), 085001 (Mar 30, 2018) (8 pages) Paper No: JERT-18-1051; doi: 10.1115/1.4039328 History: Received January 18, 2018; Revised February 02, 2018

Carbon nanotubes (CNTs) have high surface areas and excellent mechanical, electrical, and chemical properties, thus they can be useful in applications related to extraction and conversion of energy. They can be readily produced from hydrocarbon feedstocks. In this work, ethylene, the most voluminously produced hydrocarbon, was used as a CNT feedstock. It was pyrolytically decomposed at elevated temperatures (984–1130 K) to generate CNTs, by catalytic chemical vapor deposition (CVD) on stainless steel substrates. To explore possible utilization of carbon dioxide, a typical combustion byproduct, the ethylene gas was introduced to a preheated CVD reactor at the presence of various amounts of CO2, in a balance of inert nitrogen gas. The ethylene pyrolyzates were assessed at the presence/absence of catalysts and CO2 to identify the gaseous carbon growth agents. Experimental findings were also contrasted to predictions of a detailed chemical kinetic model. It was found that whereas decomposition of ethylene was somewhat inhibited by CO2 at the presence of the catalyst support, its conversion to CNTs was promoted. CNTs consistently formed at 5% CO2. Maximum yields of CNTs occurred at 1130 K, whereas highest CNT quality was achieved at 1080 K. Hydrogen and 1,3-butadiene (C4H6) were experimentally found to be the most abundant species of ethylene thermal decomposition. This was in agreement with the model, which also highlighted the importance of unimolecular hydrogen elimination.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Vander Wal, R. L. , Hall, L. J. , and Berger, G. M. , 2002, “ Optimization of Flame Synthesis for Carbon Nanotubes Using Supported Catalyst,” J. Phys. Chem. B, 106(51), pp. 13122–13132. [CrossRef]
Hall, B. , Zhuo, C. , Levendis, Y. A. , and Richter, H. , 2011, “ Influence of the Fuel Structure on the Flame Synthesis of Carbon Nanomaterials,” Carbon, 49(11), pp. 3412–3423. [CrossRef]
Lam, S.-M. , Sin, J.-C. , Abdullah, A. Z. , and Mohamed, A. R. , 2014, “ Photocatalytic TiO2/Carbon Nanotube Nanocomposites for Environmental Applications: An Overview and Recent Developments,” Fullerenes, Nanotubes Carbon Nanostruct., 22(5), pp. 471–509. [CrossRef]
Singh, I. , Rehni, A. K. , Kumar, P. , Kumar, M. , and Aboul-Enein, H.-Y. , 2009, “ Carbon Nanotubes: Synthesis, Properties and Pharmaceutical Applications,” Fullerenes, Nanotubes Carbon Nanostruct., 17(4), pp. 361–377. [CrossRef]
Wong, K. V. , and Bachelier, B. , 2013, “ Carbon Nanotubes Used for Renewable Energy Applications and Environmental Protection/Remediation: A Review,” ASME J. Energy Resour. Technol., 136(2), p. 021601. [CrossRef]
Gilani, N. , Hendijani, A. D. , and Seyedin, F. , 2016, “ Increasing the Heating Value of Ethnol Using Fanctionalized Carbon Nanotubes,” ASME J. Energy Resour. Technol., 139(1), p. 012001. [CrossRef]
Patel, V. , 2011, “Global Carbon Nanotubes Market—Industry Beckons,” Nanowerk LLC, Honolulu, HI, accessed Oct. 26, 2017, https://www.nanowerk.com/spotlight/spotid=23118.php
De Volder, M. , Sameh, F. L. , Tawfick, H. , Baughman, R. H. , and Hart, A. J. , 2013, “ Carbon Nanotubes: Present and Future Commercial Applications,” Science, 339(6119), pp. 535–539. [CrossRef] [PubMed]
Healy, M. L. , Dahlben, L. J. , and Isaacs, J. A. , 2008, “ Environmental Assessment of Single-Walled Carbon Nanotube Processes,” J. Ind. Ecol., 12(3), pp. 376–393. [CrossRef]
Zhuo, C. , Alves, J. O. , Tenorio, J. A. S. , and Levendis, Y. A. , 2012, “ Synthesis of Carbon Nanomaterials Through Up-Cycling Agricultural and Municipal Solid Wastes,” Ind. Eng. Chem. Res., 51(7), pp. 2922–2930. [CrossRef]
Zhuo, C. , and Levendis, Y. A. , 2014, “ Upcycling Waste Plastics Into Carbon Nanomaterials: A Review,” J. Appl. Polym. Sci., 131(4), pp. 39931–39944. [CrossRef]
Hata, K. , Futaba, D. N. , Mizuno, K. , Namai, T. , Yumura, M. , and Iijima, S. , 2004, “ Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes,” Science, 306(5700), pp. 1362–1364. [CrossRef] [PubMed]
Li, G. , Chakrabarti, S. , Schulz, M. , and Shanov, V. , 2010, “ The Effect of Substrate Positions in Chemical Vapor Deposition Reactor on the Growth of Carbon Nanotube Arrays,” Carbon, 48(7), pp. 2111–2115. [CrossRef]
Wen, Q. , Qian, W. , Nie, J. , Cao, A. , Ning, G. , Wang, Y. , Hu, L. , Zhang, Q. , Huang, J. , and Wei, F. , 2010, “ 100 Mm Long, Semiconducting Triple-Walled Carbon Nanotubes,” Adv. Mater., 22(16), pp. 1867–1871. [CrossRef] [PubMed]
Bajad, G. , Guguloth, V. , Vijayakumar, R. P. , and Bose, S. , 2016, “ Conversion of Plastic Waste Into CNTs Using Ni/Mo/MgO Catalyst—An Optimization Approach by Mixture Experiment,” Fullerenes, Nanotubes Carbon Nanostruct., 24(2), pp. 162–169. [CrossRef]
Aboul-Enein, A. A. , Adel-Rahman, H. , Haggar, A. M. , and Awadallah, A. E. , 2017, “ Simple Method for Synthesis of Carbon Nanotubes Over Ni–Mo/Al2O3 Catalyst Via Pyrolysis Polyethylene Waste Using a Two-Stage Process,” Fullerenes, Nanotubes Carbon Nanostruct., 25(4), pp. 211–222. [CrossRef]
Yu, L. , Lv, Y. , Wu, K. , and Li, C. , 2015, “ Synthesis of Carbon Nanotubes by Using a Series of Phenyl Derivatives as Precursors,” Fullerenes, Nanotubes Carbon Nanostruct., 23(12), pp. 1073–1076. [CrossRef]
Öncel, Ç. , and Yürüm, Y. , 2006, “ Carbon Nanotube Synthesis Via the Catalytic CVD Method: A Review on the Effect of Reaction Parameters,” Fullerenes, Nanotubes Carbon Nanostruct., 14(1), pp. 17–37. [CrossRef]
Mehrnoush, K. , Chai, S.-P. , Tan, S. H. , and Mohamed, A. R. , 2013, “ Effects of Growth Parameters on the Morphology of Aligned Carbon Nanotubes Synthesized by Floating Catalyst and the Growth Model,” Fullerenes, Nanotubes Carbon Nanostruct., 21(9), pp. 765–777. [CrossRef]
Dosodia, A. , Lal, C. , Singh, B. P. , Mathur, R. B. , and Sharma, D. K. , 2009, “ Development of Catalyst Free Carbon Nanotubes From Coal and Waste Plastics,” Fullerenes, Nanotubes Carbon Nanostruct., 17(5), pp. 567–582. [CrossRef]
Kar, K. K. , Rahaman, A. , Agnihotri, P. , and Sathiyamoorthy, D. , 2009, “ Synthesis of Carbon Nanotubes on the Surface of Carbon Fiber/Fabric by Catalytic Chemical Vapor Deposition and Their Characterization,” Fullerenes, Nanotubes Carbon Nanostruct., 17(3), pp. 209–229. [CrossRef]
Zheng, B. , Lu, C. G. , Gu, G. , Makarovski, A. , Finkelstein, G. , and Liu, J. , 2002, “ Efficient CVD Growth of Single-Walled Carbon Nanotubes on Surfaces Using Carbon Monoxide Precursor,” Nano Lett., 2(8), pp. 895–898. [CrossRef]
Malgas, G. F. , Arendse, C. J. , Cele, N. P. , and Cummings, F. R. , 2008, “ Effect of Mixture Ratios and Nitrogen Carrier Gas Flow Rates on the Morphology of Carbon Nanotube Structures Grown by CVD,” J. Mater. Sci., 43(3), pp. 1020–1025. [CrossRef]
Zhang, C.-M. , Fu, Y.-B. , Chen, Q. , and Zhang, Y.-F. , 2008, “ Effects of Oxygen on Multiwall Carbon Nanotubes Growth by PECVD,” Front. Mater. Sci. China, 2(1), pp. 37–41. [CrossRef]
Labunov, V. A. , Shulitski, B. G. , Prudnikava, A. L. , Shaman, Y. P. , and Basaev, A. S. , 2009, “ The Effect of Gas-Dynamic Factors on Selective Carbon-Nanotube Synthesis by Injection CVD Method for Field-Emission Cathodes,” J. Soc. Inf. Display, 17(5), pp. 489–495. [CrossRef]
Yoon, S. I. , Heo, S. T. , Kim, S. S. , Lee, Y. K. , Chun, H. T. , and Lee, D. G. , 2009, “ Effect of Factors on Growth of Carbon Nanotubes by Thermal CVD,” Mol. Cryst. Liq. Cryst., 499(1), pp. 472–481. [CrossRef]
Kumar, M. , and Ando, Y. , 2010, “ Chemical Vapor Deposition of Carbon Nanotubes: A Review on Growth Mechanism and Mass Production,” J. Nanosci. Nanotechnol., 10(22), pp. 3739–3758. [CrossRef] [PubMed]
Bajwa, N. , Li, X. , Ajayan, P. M. , and Vajtai, R. , 2008, “ Mechanisms for Catalytic CVD Growth of Multiwalled Carbon Nanotubes,” J. Nanosci. Nanotechnol., 8(11), pp. 6054–6064. [CrossRef] [PubMed]
Kuwana, K. , Li, T. , and Saito, K. , 2006, “ Gas-Phase Reactions During CVD Synthesis of Carbon Nanotubes: Insights Via Numerical Experiments,” Chem. Eng. Sci., 61(20), pp. 6718–6726. [CrossRef]
Ago, H. , Uehara, N. , Yoshihara, N. , Tsuji, M. , Yumura, M. , Tomonaga, N. , and Setoguchi, T. , 2006, “ Gas Analysis of the CVD Process for High Yield Growth of Carbon Nanotubes Over Metal-Supported Catalysts,” Carbon, 44(14), pp. 2912–2918. [CrossRef]
Plata, D. L. , Hart, A. J. , Reddy, C. M. , and Gschwend, P. M. , 2009, “ Early Evaluation of Potential Environmental Impacts of Carbon Nanotube Synthesis by Chemical Vapor Deposition,” Environ. Sci. Technol., 43(21), pp. 8367–8373. [CrossRef] [PubMed]
Nessim, G. D. , Seita, M. , Plata, D. L. , O'Brien, K. P. , Hart, A. J. , Meshot, E. R. , Reddy, C. M. , Gschwend, P. M. , and Thompson, C. V. , 2011, “ Precursor Gas Chemistry Determines the Crystallinity of Carbon Nanotubes Synthesized at Low Temperature,” Carbon, 49(3), pp. 804–810. [CrossRef]
Ma, H. , Pan, L. , and Nakayama, Y. , 2010, “ Influence of Gas-Phase Reactions on the Growth of Carbon Nanotubes,” J. Phys. Chem. C, 114(6), pp. 2398–2402. [CrossRef]
Shukla, B. , Saito, T. , Ohmori, S. , Koshi, M. , Yumura, M. , and Iijima, S. , 2010, “ Interdependency of Gas Phase Intermediates and Chemical Vapor Deposition Growth of Single Wall Carbon Nanotubes,” Chem. Mater., 22(22), pp. 6035–6043. [CrossRef]
Zhuo, C. , Hall, B. , Richter, H. , and Levendis, Y. A. , 2010, “ Synthesis of Carbon Nanotubes by Sequential Pyrolysis and Combustion of Polyethylene,” Carbon, 48(14), pp. 4024–4034. [CrossRef]
Alves, J. O. , Zhuo, C. , Levendis, Y. A. , and Tenorio, J. A. S. , 2011, “ Catalytic Conversion of Wastes From the Bioethanol Production Into Carbon Nanomaterials,” Appl. Catal., B, 106(3–4), pp. 433–444. [CrossRef]
Vander Wal, R. L. , 2000, “ Flame Synthesis of Substrate-Supported Metal-Catalyzed Carbon Nanotubes,” Chem. Phys. Lett., 324(1–3), pp. 217–223.
Vander Wal, R. L. , Hall, L. J. , and Berger, G. M. , 2002, “ The Chemistry of Premixed Flame Synthesis of Carbon Nanotubes Using Supported Catalysts,” Proc. Combust. Inst., 29(1), pp. 1079–1085. [CrossRef]
Zhuo, C. , Khanshan, F. , West, R. , Richter, H. , and Levendis, Y. A. , 2015, “ Effects of CO2 on Carbon Nanotube Formation From Thermal Decomposition of Ethylene,” MRS Online Proc. Libr., 1747, p. mrsf14-1747-hh04-09.
Huang, J. Q. , Zhang, Q. , Zhao, M. Q. , and Wei, F. , 2009, “ Process Intensification by CO2 for High Quality Carbon Nanotube Forest Growth: Double-Walled Carbon Nanotube Convexity or Single-Walled Carbon Nanotube Bowls?,” Nano Res., 2(11), pp. 872–881. [CrossRef]
Corthals, S. , Van Noyen, J. , Geboers, J. , Vosch, T. , Liang, D. , Ke, X. , Hofkens, J. , Van Tendeloo, G. , Jacobs, P. , and Sels, B. , 2012, “ The Beneficial Effect of CO2 in the Low Temperature Synthesis of High Quality Carbon Nanofibers and Thin Multiwalled Carbon Nanotubes From CH4 over Ni Catalysts,” Carbon, 50(2), pp. 372–384. [CrossRef]
Wen, Q. , Qian, W. , Wei, F. , Liu, Y. , Ning, G. , and Zhang, Q. , 2007, “ CO2-Assisted SWNT Growth on Porous Catalysts,” Chem. Mater., 19(6), pp. 1226–1230. [CrossRef]
Chen, M. , Kao, Y.-C. , Yu, H. W. , Lu, S.-C. , and Koo, H.-S. , 2007, “ Influence of CO2 and N2 on the Growth of Carbon Nanotubes by Using Thermal Chemical Vapor Deposition,” Thin Solid Films, 516(2–4), pp. 277–283. [CrossRef]
Li, Z. , Xu, Y. , Ma, X. , Dervishi, E. , Saini, V. , Biris, A. R. , Lupu, D. , and Biris, A. S. , 2008, “ CO2 Enhanced Carbon Nanotube Synthesis From Pyrolysis of Hydrocarbons,” Chem. Commun., 28, pp. 3260–3262. [CrossRef]
Yang, X. S. , Yuan, L. X. , Peterson, V. K. , Yin, Y. B. , Minett, A. I. , and Harris, A. T. , 2011, “ Open-Ended Aligned Carbon Nanotube Arrays Produced Using CO2-Assisted Floating-Ferrocene Chemical Vapor Deposition,” J. Phys. Chem. C, 115(29), pp. 14093–14097. [CrossRef]
Magrez, A. , Seo, J. W. , Smajda, R. , Mionic, M. , and Forro, L. , 2010, “ Catalytic CVD Synthesis of Carbon Nanotubes: Towards High Yield and Low Temperature Growth,” Materials, 3(12), pp. 4871–4891. [CrossRef] [PubMed]
Magrez, A. , Seo, J. W. , Smajda, R. , Korbely, B. , Andresen, J. C. , Mionić, M. , Casimirius, S. , and Forró, L. , 2010, “ Low-Temperature, Highly Efficient Growth of Carbon Nanotubes on Functional Materials by an Oxidative Dehydrogenation Reaction,” ACS Nano, 4(7), pp. 3702–3708. [CrossRef] [PubMed]
Magrez, A. , Seo, J. W. , Kuznetsov, V. L. , and Forró, L. F. , 2007, “ Evidence of an Equimolar C2H2–CO2 Reaction in the Synthesis of Carbon Nanotubes,” Angew. Chem. Int. Ed., 46(3), pp. 441–444. [CrossRef]
Gaiktwad, A. V. , Rout, T. K. , Van der Plas, D. , Dennis, R. V. , Banerjee, S. , Benito, S. P. , and Lefferts, L. , 2012, “ Carbon Nanotube/Carbon Nanofiber Growth From Industrial by-Product Gases on Low- and High-Alloy Steels,” Carbon, 50(12), pp. 4722–4731. [CrossRef]
Zhuo, C. , Wang, X. , Nowak, W. , and Levendis, Y. A. , 2014, “ Oxidative Heat Treatment of 316 L Stainless Steel for Effective Catalytic Growth of Carbon Nanotubes,” Appl. Surf. Sci., 313, pp. 227–236. [CrossRef]
Ergut, A. , Therrien, R. J. , Levendis, Y. A. , Richter, H. , Howard, J. B. , and Carlson, J. B. , 2009, “ Chemical Speciation of Premixed Ethylbenzene Flames at the Soot Onset Limit at Various φ,T) Pairs,” Combust. Flame, 156(5), pp. 1014–1022. [CrossRef]
Zhang, H.-Y. , and McKinnon, J. T. , 1995, “ Elementary Reaction Modelling of High Temperature Benzene Combustion,” Combust. Sci. Technol., 107(4–6), pp. 261–300. [CrossRef]
Shandross, R. A. , Longwell, J. P. , and Howard, J. B. , 1996, “ Destruction of Benene in High-Temperature Flames: Chemistry of Benzene and Phenol,” 26th Symposium (International) on Combustion, Pittsburgh, PA, pp. 711–719.
Richter, H. , Grieco, W. J. , and Howard, J. B. , 1999, “ Formation Mechanism of Polycyclic Aromatic Hydrocarbons and Fullerenes in Premixed Benzene Flames,” Combust. Flame, 119(1–2), pp. 1–22. [CrossRef]
Richter, H. , Benish, T. G. , Mazyar, O. A. , Green, W. H. , and Howard, J. B. , 2000, “ Formation of Polycyclic Aromatic Hydrocarbons and Their Radicals in a Nearly Sooting Premixed Benzene Flame,” Proc. Combust. Inst., 28(2), pp. 2609–2618. [CrossRef]
Richter, H. , and Howard, J. B. , 2002, “ Formation and Consumption of Single-Ring Aromatic Hydrocarbons and Their Precursors in Premixed Acetylene, Ethylene and Benzene Flames,” Phys. Chem. Chem. Phys., 4(11), pp. 2038–2055. [CrossRef]
Dupont, L. , El Bakali, A. , Pauwels, J.-F. , Da Costa, I. , Meunier, P. , and Richter, H. , 2003, “ Investigation of Stoichiometric Methane/Air/Benzene (1.5%) and Methane/Air Low Pressure Flames,” Combust. Flame, 135(1–2), pp. 171–183. [CrossRef]
Richter, H. , Mazyar, O. A. , Sumati, R. , Green, W. H. , Howard, J. B. , and Bozzelli, J. W. , 2001, “ Detailed Kinetic Study of the Growth of Small Polycyclic Aromatic Hydrocarbons. 1. 1-Naphthyl + Ethyne,” Phys. Chem. A, 105(9), pp. 1561–1573. [CrossRef]
Chang, A. Y. , Bozzelli, J. W. , and Dean, A. M. , 2000, “ Kinetic Analysis of Complex Chemical Activation and Unimolecular Dissociation Reactions Using QRRK Theory and the Modified Strong Collision Approximation,” Z. Phys. Chem., 214(11), pp. 1533–1573. [CrossRef]
Richter, H. , Granata, S. , Green, W. H. , and Howard, J. B. , 2005, “ Detailed Modeling of PAH and Soot Formation in a Laminar Premixed Benzene/Oxygen/Argon Low-Pressure Flame,” Proc. Combust. Inst., 30(1), pp. 1397–1405. [CrossRef]
Ergut, A. , Granata, S. , Jordan, J. , Carlson, J. B. , Howard, J. B. , Richter, H. , and Levendis, Y. A. , 2006, “ PAH Formation in One-Dimensional Premixed Fuel-Rich Atmospheric Pressure Ethylbenzene and Ethyl Alcohol Flames,” Combust. Flame, 144(4), pp. 757–772. [CrossRef]
Ergut, A. , Levendis, Y. A. , Richter, H. , Howard, J. B. , and Carlson, J. B. , 2007, “ The Effect of Equivalence Ratio on the Soot Onset Chemistry in One-Dimensional, Atmospheric-Pressure, Premixed Ethylbenzene Flames,” Combust. Flame, 151(1–2), pp. 173–195. [CrossRef]
Ergut, A. , Therrien, R. J. , Levendis, Y. A. , Richter, H. , Howard, J. B. , and Carlson, J. B. , 2008, “ The Effect of Temperature on the Soot Onset Chemistry in One-Dimensional, Atmospheric-Pressure, Premixed Ethylbenzene Flames,” Combust. Flame, 155(1–2), pp. 232–246. [CrossRef]
Therrien, R. J. , Ergut, A. , Levendis, Y. A. , Richter, H. , Howard, J. B. , and Carlson, J. B. , 2010, “ Investigation of Critical Equivalence Ratio and Chemical Speciation in Flames of Ethylbenzene-Ethanol Blends,” Combust. Flame, 157(2), pp. 296–312. [CrossRef]
Wang, J. , Levendis, Y. A. , Richter, H. , Howard, J. B. , and Carlson, J. B. , 2001, “ Polycyclic Aromatic Hydrocarbon and Particulate Emissions From Two-Stage Combustion of Polystyrene:  The Effect of the Primary Furnace Temperature,” Environ. Sci. Technol., 35(17), pp. 3541–3552. [CrossRef] [PubMed]
Wang, J. , Richter, H. , Howard, J. B. , Levendis, Y. A. , and Carlson, J. B. , 2002, “ Polynuclear Aromatic Hydrocarbon and Particulate Emissions From Two-Stage Combustion of Polystyrene:  The Effects of the Secondary Furnace (Afterburner) Temperature and Soot Filtration,” Environ. Sci. Technol., 36(4), pp. 797–808. [CrossRef] [PubMed]
Wang, Z. , Richter, H. , Howard, J. B. , Jordan, J. , Carlson, J. B. , and Levendis, Y. A. , 2003, “ Laboratory Investigation of the Products of the Incomplete Combustion of Waste Plastics and Techniques for Their Minimization,” Ind. Eng. Chem. Res., 43(12), pp. 2873–2886. [CrossRef]
Wang, Z. , Wang, J. , Richter, H. , Howard, J. B. , Carlson, J. B. , and Levendis, Y. A. , 2003, “ Comparative Study on Polycyclic Aromatic Hydrocarbons, Light Hydrocarbons, Carbon Monoxide, and Particulate Emissions From the Combustion of Polyethylene, Polystyrene, and Poly(Vinyl Chloride),” Energy Fuels, 17(4), pp. 999–1013. [CrossRef]
Cuoci, A. , Frassoldati, A. , Faravelli, T. , and Ranzi, E. , 2009, “ Formation of Soot and Nitrogen Oxides in Unsteady Counterflow Diffusion Flames,” Combust. Flame, 156(10), pp. 2010–2022. [CrossRef]
Aiken, R. C. , 1985, Stiff Computation, Oxford University Press, Oxford, UK.
Manca, D. , Buzzi-Ferraris, G. , Faravelli, T. , and Ranzi, E. , 2001, “ Numerical Problems in the Solution of Oxidation and Combustion Models,” Combust. Theory Modell., 5(2), pp. 185–199. [CrossRef]
Buzzi-Ferraris, G. , 1993, Scientific C++: Building Numerical Libraries the Object-Oriented Way, Addison-Wesley, Boston, MA.
Buzzi-Ferraris, G. , 2010, BzzMath: Numerical Library in C++, Politecnico di Milano, Milan, Italy.
Ferraris, G. B. , and Manca, D. , 1998, “ BzzOde: A New C++ Class for the Solution of Stiff and Non-Stiff Ordinary Differential Equation Systems,” Comput. Chem. Eng., 22(11), pp. 1595–1621. [CrossRef]
Cuoci, A. , Mehl, M. , Buzzi-Ferraris, G. , Faravelli, T. , Manca, D. , and Ranzi, E. , 2005, “ Autoignition and Burning Rates of Fuel Droplets Under Microgravity,” Combust. Flame, 143(3), pp. 211–226. [CrossRef]
Ruiz, M. P. , Callejas, A. , Millera, A. , Alzueta, M. U. , and Bilbao, R. , 2007, “ Soot Formation From C2H2 and C2H4 Pyrolysis at Different Temperatures,” J. Anal. Appl. Pyrolysis, 79(1–2), pp. 244–251. [CrossRef]
Brüggert, M. , Hu, Z. , and Hüttinger, K. L. , 1999, “ Chemistry and Kinetics of Chemical Vapor Deposition of Pyrocarbon—Part VI: Influence of Temperature Using Methane as a Carbon Source,” Carbon, 37(12), pp. 2021–2030. [CrossRef]
Dresselhaus, M. S. , Dresselhaus, G. , Saito, R. , and Jorio, A. , 2005, “ Raman Spectroscopy of Carbon Nanotubes,” Phys. Rep., 409(2), pp. 47–99. [CrossRef]
Saito, R. , Fantini, C. , and Jiang, J. , 2008, “ Excitonic States and Resonance Raman Spectroscopy of Single-Wall Carbon Nanotubes,” Carbon Nanotubes (Topics in Applied Physics, Vol. 111), Springer, Berlin, pp. 251–286. [CrossRef]
Abián, M. , Millera, A. , Bilbao, R. , and Alzueta, M. U. , 2012, “ Effect of Recirculation Gases on Soot Formed From Ethylene Pyrolysis,” Combust. Sci. Technol., 184(7–8), pp. 980–994. [CrossRef]
Zhang, Y. , Lou, C. , Liu, D. , Li, Y. , and Ruan, L. , 2013, “ Chemical Effects of CO2 Concentration on Soot Formation in Jet-Stirred/Plug-Flow Reactor,” Chin. J. Chem. Eng., 21(11), pp. 1269–1283. [CrossRef]
Abián, M. , Millera, A. , Bilbao, R. , and Alzueta, M. U. , 2012, “ Experimental Study on the Effect of Different CO2 Concentrations on Soot and Gas Rroducts From Ethylene Thermal Decomposition,” Fuel, 91(1), pp. 307–312. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Schematic of the experimental setup used in this ethylene-based CVD generation of CNTs

Grahic Jump Location
Fig. 2

SEM images of condensed matter nanocarbons grown on the surface of stainless steel catalysts under different reaction conditions: (a) T= 1080 K, (CO2) = 0%; (b) T = 1080 K, (CO2) = 5%; (c) T = 1130 K, (CO2) = 0%; and (d) T = 1130 K, (CO2) = 5%; scale bar: 1 μm

Grahic Jump Location
Fig. 3

Comparison of GC measurements and simulation results for reactions that occurred at 1080 K, with 0% and 5% CO2 addition without catalysts

Grahic Jump Location
Fig. 4

Comparison of GC measurements for reactions that occurred at 1080 K, with 0% and 5% CO2 addition, with and without catalysts

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In