0
Review Article

Microwave-Assisted Pyrolysis of Biomass for Bio-Oil Production: A Review of the Operation Parameters

[+] Author and Article Information
Yaning Zhang

School of Energy Science and Engineering,
Harbin Institute of Technology,
Harbin 150001, China;
Department of Bioproducts and
Biosystems Engineering,
University of Minnesota,
St. Paul, MN 55108
e-mail: ynzhang@hit.edu.cn

Wenke Zhao, Bingxi Li

School of Energy Science and Engineering,
Harbin Institute of Technology,
Harbin 150001, China

Gongnan Xie

School of Marine Science and Technology,
Northwestern Polytechnical University,
Xi'an 710072, China
e-mail: xgn@nwpu.edu.cn

1Corresponding authors.

Contributed by the Advanced Energy Systems Division of ASME for publication in the JOURNAL OF ENERGY RESOURCES TECHNOLOGY. Manuscript received June 16, 2017; final manuscript received March 12, 2018; published online March 29, 2018. Assoc. Editor: Oronzio Manca.

J. Energy Resour. Technol 140(4), 040802 (Mar 29, 2018) (6 pages) Paper No: JERT-17-1291; doi: 10.1115/1.4039604 History: Received June 16, 2017; Revised March 12, 2018

As compared with the conventional electrical heating pyrolysis, microwave-assisted pyrolysis (MAP) is more rapid and efficient due to its unique heating mechanisms. However, bio-oil production from MAP of biomass is strongly dependent on the operation parameters. Based on the recent researches, this study reviews the effects of the main operation parameters including microwave power, pyrolysis temperature, and pyrolysis time on the bio-oil yield obtained from MAP of biomass. The results show that microwave power, pyrolysis temperature, and pyrolysis time usually increase the bio-oil yield initially and decrease the bio-oil yield finally. The reported optimal microwave powers, pyrolysis temperatures, and pyrolysis times were mainly in the ranges of 300–1500 W, 400–800 °C, and 6–25 min, respectively. The mechanisms for bio-oil produced from MAP of biomass as affected by the main operation parameters were also analyzed.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

FAO, 2017, “Annual Population,” Food and Agricultural Organization, Rome, Italy, accessed July 5, 2017, http://faostat3.fao.org/download/O/OA/E
The World Bank, 2017, “GDP,” The World Bank Group, Washington, DC, accessed July 5, 2017, http://data.worldbank.org/indicator/NY.GDP.MKTP.CD
Statista, 2017, “ Statista: Global Gross Domestic Product (GDP) 2020,” Statista, Inc., New York, accessed July 5, 2017, http://www.statista.com/statistics/268750/global-gross-domestic-product-gdp/
BP, 2017, “ Statistical Review of World Energy,” BP Inc., Anchorage, AK, accessed July 5, 2017, http://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html
Parker, H. W. , 1981, “ Engine Fuels From Biomass,” ASME J. Energy Resour. Technol., 103(4), pp. 344–351. [CrossRef]
Lin, J. C. M. , 2006, “ Combination of a Biomass Fired Updraft Gasifier and a Stirling Engine for Power Production,” ASME J. Energy Resour. Technol., 129(1), pp. 66–70. [CrossRef]
Dean, J. , Braun, R. , Penev, M. , Kinchin, C. , and Muñoz, D. , 2011, “ Leveling Intermittent Renewable Energy Production Through Biomass Gasification-Based Hybrid Systems,” ASME J. Energy Resour. Technol., 133(3), p. 031801. [CrossRef]
Zhang, Y. , Gao, X. , Li, B. , Zhang, H. , Qi, B. , and Wu, Y. , 2015, “ An Expeditious Methodology for Estimating the Exergy of Woody Biomass by Means of Heating Values,” Fuel, 159, pp. 712–719. [CrossRef]
Güell, B. M. , Sandquist, J. , and Sørum, L. , 2012, “ Gasification of Biomass to Second Generation Biofuels: A Review,” ASME J. Energy Resour. Technol., 135(1), p. 014001. [CrossRef]
Kan, T. , Strezov, V. , and Evans, T. J. , 2016, “ Lignocellulosic Biomass Pyrolysis: A Review of Product Properties and Effects of Pyrolysis Parameters,” Renewable Sustainable Energy Rev., 57, pp. 1126–1140. [CrossRef]
Ferreira, S. B. , and Pilidis, P. , 2001, “ Comparison of Externally Fired and Internal Combustion Gas Turbines Using Biomass Fuel,” ASME J. Energy Resour. Technol., 123(4), pp. 291–296. [CrossRef]
Maxwell, T. T. , Nevill, J. D. , Ertas, A. , and Craig, J. , 2005, “ Biomass Feed System Flow Control Using a Weigh Belt Table,” ASME J. Energy Resour. Technol., 127(1), pp. 71–82. [CrossRef]
Motasemi, F. , and Afzal, M. T. , 2013, “ A Review on the Microwave-Assisted Pyrolysis Technique,” Renewable Sustainable Energy Rev., 28, pp. 317–330. [CrossRef]
Srinivas, T. , Gupta, A. V. S. S. K. S. , and Reddy, B. V. , 2009, “ Thermodynamic Equilibrium Model and Exergy Analysis of a Biomass Gasifier,” ASME J. Energy Resour. Technol., 131(3), p. 031801. [CrossRef]
Herbert, G. M. J. , and Krishnan, A. U. , 2016, “ Quantifying Environmental Performance of Biomass Energy,” Renewable Sustainable Energy Rev., 59, pp. 292–308. [CrossRef]
Srinivas, T. , Reddy, B. V. , and Gupta, A. V. S. S. K. S. , 2012, “ Thermal Performance Prediction of a Biomass Based Integrated Gasification Combined Cycle Plant,” ASME J. Energy Resour. Technol, 134(2), p. 021002. [CrossRef]
Mitianiec, W. , 2017, “ Co-Combustion of Pulverized Coal and Biomass in Fluidized Bed of Furnace,” ASME J. Energy Resour. Technol., 139(6), p. 062204. [CrossRef]
Motasemi, F. , and Ani, F. N. , 2012, “ A Review on Microwave-Assisted Production of Biodiesel,” Renewable Sustainable Energy Rev., 16(7), pp. 4719–4733. [CrossRef]
Gouli, S. , Serdari, A. , Stournas, S. , and Lois, E. , 2000, “ Transportation Fuel Substitutes Derived From Biomass,” ASME J. Energy Resour. Technol., 123(1), pp. 39–43. [CrossRef]
Mohan, D. , Pittman, C. U. , and Steele, P. H. , 2006, “ Pyrolysis of Wood/Biomass for Bio-Oil:  A Critical Review,” Energy Fuel, 20(3), pp. 848–889. [CrossRef]
Saber, M. , Nakhshiniev, B. , and Yoshikawa, K. , 2016, “ A Review of Production and Upgrading of Algal Bio-Oil,” Renewable Sustainable Energy Rev., 58, pp. 918–930. [CrossRef]
Masimalai, S. K. , and Nandagopal, S. , 2016, “ Combined Effect of Oxygen Enrichment and Dual Fueling on the Performance Behavior of a CI Engine Fueled With Pyro Oil–Diesel Blend as Fuel,” ASME J. Energy Resour. Technol., 138(3), p. 032206. [CrossRef]
Bridgwater, A. V. , 2012, “ Review of Fast Pyrolysis of Biomass and Product Upgrading,” Biomass Bioenergy, 38, pp. 68–94. [CrossRef]
Boateng, A. A. , Mullen, C. A. , Osgood-Jacobs, L. , Carlson, P. , and Macken, N. , 2012, “ Mass Balance, Energy, and Exergy Analysis of Bio-Oil Production by Fast Pyrolysis,” ASME J. Energy Resour. Technol., 134(4), p. 042001. [CrossRef]
Zhang, Y. , Chen, P. , Liu, S. , Peng, P. , Min, M. , Cheng, Y. , Anderson, E. , Zhou, N. , Fan, L. , Liu, C. , Chen, G. , Liu, Y. , Lei, H. , Li, B. , and Ruan, R. , 2017, “ Effects of Feedstock Characteristics on Microwave-Assisted Pyrolysis—A Review,” Bioresour. Technol., 230, pp. 143–151. [CrossRef]
Chen, P. , Xie, Q. , Addy, M. , Zhou, W. , Liu, Y. , Wang, Y. , Cheng, Y. , Li, K. , and Ruan, R. , 2016, “ Utilization of Municipal Solid and Liquid Wastes for Bioenergy and Bioproducts Production,” Bioresour. Technol., 215, pp. 163–172. [CrossRef]
Yin, C. , 2012, “ Microwave-Assisted Pyrolysis of Biomass for Liquid Biofuels Production,” Bioresour. Technol., 120, pp. 273–284. [CrossRef]
Lam, S. S. , and Chase, H. A. , 2012, “ A Review on Waste to Energy Processes Using Microwave Pyrolysis,” Energies, 5(12), pp. 4209–4232. [CrossRef]
Vamvuka, D. , 2011, “ Bio-Oil, Solid and Gaseous Biofuels From Biomass Pyrolysis Processes—An Overview,” Int. J. Energy Res., 35(10), pp. 835–862. [CrossRef]
Bu, Q. , Lei, H. , Zacher, A. H. , Wang, L. , Ren, S. , Liang, J. , Wei, Y. , Liu, Y. , Tang, J. , Zhang, Q. , and Ruan, R. , 2012, “ A Review of Catalytic Hydrodeoxygenation of Lignin-Derived Phenols From Biomass Pyrolysis,” Bioresour. Technol., 124, pp. 470–477. [CrossRef]
Mushtaq, F. , Mat, R. , and Ani, F. N. , 2014, “ A Review on Microwave Assisted Pyrolysis of Coal and Biomass for Fuel Production,” Renewable Sustainable Energy Rev., 39, pp. 555–574. [CrossRef]
Kim, J. S. , 2015, “ Production, Separation and Applications of Phenolic-Rich Bio-Oil—A Review,” Bioresour. Technol., 178, pp. 90–98. [CrossRef]
Papari, S. , and Hawboldt, K. , 2015, “ A Review on the Pyrolysis of Woody Biomass to Bio-Oil: Focus on Kinetic Models,” Renewable Sustainable Energy Rev., 52, pp. 1580–1595. [CrossRef]
Wang, Y. , and Chen, G. Y. , 2014, “ A Review of Bio-Oil Production From Sewage Sludge,” Adv. Mater. Res., 864–867, pp. 1909–1918.
Macquarrie, D. J. , Clark, J. H. , and Fitzpatrick, E. , 2012, “ The Microwave Pyrolysis of Biomass,” Biofuel Bioprod. Biorefin., 6(5), pp. 549–560. [CrossRef]
Huang, Y. F. , Chiueh, P. T. , and Lo, S. L. , 2016, “ A Review on Microwave Pyrolysis of Lignocellulosic Biomass,” Sustainable Environ. Res, 26 (3), pp. 103–109. [CrossRef]
Januri, Z. , Rahman, N. B. A. , Idris, S. S. , Matali, S. , and Manaf, S. F. A. , 2014, “ Yields Performance of Automotive Paint Sludge Via Microwave Assisted Pyrolysis,” Appl. Mech. Mater., 548–549, pp. 191–195. [CrossRef]
Wang, N. , Tahmasebi, A. , Yu, J. , Xu, J. , Huang, F. , and Mamaeva, A. , 2015, “ A Comparative Study of Microwave-Induced Pyrolysis of Lignocellulosic and Algal Biomass,” Bioresour. Technol., 190, pp. 89–96. [CrossRef]
Yu, F. , Ruan, R. , and Steele, P. , 2009, “ Microwave Pyrolysis of Corn Stover,” Trans. ASABE, 52(5), pp. 1595–1601. [CrossRef]
Du, J. , Liu, P. , Liu, Z. H. , Sun, D. G. , and Tao, C. Y. , 2010, “ Fast Pyrolysis of Biomass for Bio-Oil With Ionic Liquid and Microwave Irradiation,” J. Fuel Chem. Technol., 38(5), pp. 554–559. [CrossRef]
Zhao, X. , Wang, M. , Liu, H. , Zhao, C. , Ma, C. , and Song, Z. , 2013, “ Effect of Temperature and Additives on the Yields of Products and Microwave Pyrolysis Behaviors of Wheat Straw,” J. Anal. Appl. Pyrolysis, 100, pp. 49–55. [CrossRef]
Li, L. , Ma, X. , Xu, Q. , and Hu, Z. , 2013, “ Influence of Microwave Power, Metal Oxides and Metal Salts on the Pyrolysis of Algae,” Bioresour. Technol., 142, pp. 469–474. [CrossRef]
Du, Z. , Li, Y. , Wang, X. , Wan, Y. , Chen, Q. , Wang, C. , Lin, X. , Liu, Y. , Chen, P. , and Ruan, R. , 2011, “ Microwave-Assisted Pyrolysis of Microalgae for Biofuel Production,” Bioresour. Technol., 102(7), pp. 4890–4896. [CrossRef]
Hu, Z. , Ma, X. , and Chen, C. , 2012, “ A Study on Experimental Characteristic of Microwave-Assisted Pyrolysis of Microalgae,” Bioresour. Technol., 107, pp. 487–493. [CrossRef]
Liu, H. , Ma, X. , Li, L. , Hu, Z. , Guo, P. , and Jiang, Y. , 2014, “ The Catalytic Pyrolysis of Food Waste by Microwave Heating,” Bioresour. Technol., 166, pp. 45–50. [CrossRef]
Tian, Y. , Zuo, W. , Ren, Z. , and Chen, D. , 2011, “ Estimation of a Novel Method to Produce Bio-Oil From Sewage Sludge by Microwave Pyrolysis With the Consideration of Efficiency and Safety,” Bioresour. Technol., 102(2), pp. 2053–2061. [CrossRef]
Huang, Y. F. , Chiueh, P. T. , Kuan, W. H. , and Lo, S. L. , 2013, “ Microwave Pyrolysis of Rice Straw: Products, Mechanism, and Kinetics,” Bioresour. Technol., 142, pp. 620–624. [CrossRef]
Dai, Q. , Jiang, X. , Jiang, Y. , Jin, Y. , Wang, F. , Chi, Y. , Yan, J. , and Xu, A. , 2014, “ Temperature Influence and Distribution in Three Phases of PAHs in Wet Sewage Sludge Pyrolysis Using Conventional and Microwave Heating,” Energy Fuel, 28(5), pp. 3317–3325. [CrossRef]
El harfi, K. , Mokhlisse, A. , Chanâa, M. B. , and Outzourhit, A. , 2000, “ Pyrolysis of the Moroccan (Tarfaya) Oil Shales Under Microwave Irradiation,” Fuel, 79(7), pp. 733–742. [CrossRef]
Salema, A. A. , and Ani, F. N. , 2012, “ Microwave-Assisted Pyrolysis of Oil Palm Shell Biomass Using an Overhead Stirrer,” J. Anal. Appl. Pyrolysis, 96, pp. 162–172. [CrossRef]
Bu, Q. , Lei, H. , Ren, S. , Wang, L. , Zhang, Q. , Tang, J. , and Ruan, R. , 2012, “ Production of Phenols and Biofuels by Catalytic Microwave Pyrolysis of Lignocellulosic Biomass,” Bioresour. Technol., 108, pp. 274–279. [CrossRef]
Salema, A. A. , and Ani, F. N. , 2012, “ Pyrolysis of Oil Palm Empty Fruit Bunch Biomass Pellets Using Multimode Microwave Irradiation,” Bioresour. Technol., 125, pp. 102–107. [CrossRef]
Mamaeva, A. , Tahmasebi, A. , Tian, L. , and Yu, J. , 2016, “ Microwave-Assisted Catalytic Pyrolysis of Lignocellulosic Biomass for Production of Phenolic-Rich Bio-Oil,” Bioresour. Technol., 211, pp. 382–389. [CrossRef]
Zhang, B. , Yang, C. , Moen, J. , Le, Z. , Hennessy, K. , Wan, Y. , Liu, Y. , Lei, H. , Chen, P. , and Ruan, R. , 2010, “ Catalytic Conversion of Microwave-Assisted Pyrolysis Vapors,” Energy Source Part A, 32(18), pp. 1756–1762. [CrossRef]
Menéndez, J. A. , Domínguez, A. , Fernández, Y. , and Pis, J. J. , 2007, “ Evidence of Self-Gasification During the Microwave-Induced Pyrolysis of Coffee Hulls,” Energy Fuel, 21(1), pp. 373–378. [CrossRef]
Xie, Q. , Peng, P. , Liu, S. , Min, M. , Cheng, Y. , Wan, Y. , Li, Y. , Lin, X. , Liu, Y. , Chen, P. , and Ruan, R. , 2014, “ Fast Microwave-Assisted Catalytic Pyrolysis of Sewage Sludge for Bio-Oil Production,” Bioresour. Technol., 172, pp. 162–168. [CrossRef]
Yang, A. L. C. , and Ani, F. N. , 2016, “ Controlled Microwave-Induced Pyrolysis of Waste Rubber Tires,” Int. J. Technol., 7(2), pp. 314–322. [CrossRef]
Zhao, X. , Wang, M. , Liu, H. , Li, L. , Ma, C. , and Song, Z. , 2012, “ A Microwave Reactor for Characterization of Pyrolyzed Biomass,” Bioresour. Technol., 104, pp. 673–678. [CrossRef]
Wang, L. , Lei, H. , Ren, S. , Bu, Q. , Liang, J. , Wei, Y. , Liu, Y. , Lee, G. S. , Chen, S. , Tang, J. , Zhang, Q. , and Ruan, R. , 2012, “ Aromatics and Phenols From Catalytic Pyrolysis of Douglas Fir Pellets in Microwave With ZSM-5 as a Catalyst,” J. Anal. Appl. Pyrolysis, 98, pp. 194–200. [CrossRef]
Wang, Y. , Dai, L. , Wang, R. , Fan, L. , Liu, Y. , Xie, Q. , and Ruan, R. , 2016, “ Hydrocarbon Fuel Production From Soapstone Through Fast Microwave-Assisted Pyrolysis Using Microwave Absorbent,” J. Anal. Appl. Pyrolysis, 119, pp. 251–258. [CrossRef]
Zhang, B. , Zhong, Z. , Xie, Q. , Liu, S. , and Ruan, R. , 2016, “ Two-Step Fast Microwave-Assisted Pyrolysis of Biomass for Bio-Oil Production Using Microwave Absorbent and HZSM-5 Catalyst,” J. Environ. Sci., 45, pp. 240–247. [CrossRef]
Aziz, S. M. A. , Wahi, R. , Ngaini, Z. , and Hamdan, S. , 2013, “ Bio-Oils From Microwave Pyrolysis of Agricultural Wastes,” Fuel Process. Technol., 106, pp. 744–750. [CrossRef]
Wang, X. , Morrison, W. , Du, Z. , Wan, Y. , Lin, X. , Chen, P. , and Ruan, R. , 2012, “ Biomass Temperature Profile Development and Its Implications Under the Microwave-Assisted Pyrolysis Condition,” Appl. Energy, 99, pp. 386–392. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

World population, global gross domestic product, and world energy consumption during 2006–2015 [14]

Grahic Jump Location
Fig. 2

World energy production during 2006–2015 [4]

Grahic Jump Location
Fig. 3

Some of the reported wet bio-oil yields at different microwave powers

Grahic Jump Location
Fig. 4

Some of the reported wet bio-oil yields at different pyrolysis temperatures: 1—cellulose, 2—corn stover, 3—peanut shell, 4—palm shell, 5—aspen pellet, 6—Douglas fir, 7—fruit bench, 8—pine sawdust, 9—sewage sludge, 10—sewage sludge, 11—tire, 12—tire, and 13—soapstock

Grahic Jump Location
Fig. 5

Some of the reported wet bio-oil yields at different pyrolysis times

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In