0
Research Papers: Energy Systems Analysis

Performance Assessment and Optimization of a Thermophotovoltaic Converter–Thermoelectric Generator Combined System

[+] Author and Article Information
Tie Liu

Department of Physics,
Jiujiang Research Institute,
Xiamen University,
Xiamen 361005, China

Zhimin Yang

Department of Physics,
Jiujiang Research Institute,
Xiamen University,
Xiamen 361005, China
e-mail: zhiminyoung@hotmail.com

1Corresponding author.

Contributed by the Advanced Energy Systems Division of ASME for publication in the JOURNAL OF ENERGY RESOURCES TECHNOLOGY. Manuscript received December 15, 2017; final manuscript received March 6, 2018; published online March 29, 2018. Assoc. Editor: Esmail M. A. Mokheimer.

J. Energy Resour. Technol 140(7), 072010 (Mar 29, 2018) (6 pages) Paper No: JERT-17-1712; doi: 10.1115/1.4039629 History: Received December 15, 2017; Revised March 06, 2018

To evaluate the feasibility of the performance enhancement of a thermophotovoltaic (TPV) converter by using a thermoelectric generator (TEG), a new model of a combined system is established, where the TEG is attached on the backside of the TPV converter to harvest the heat produced in the TPV converter. The effects of the voltage output of the TPV converter, band gap energy of the TPV converter, dimensionless current of the TEG, and emitter temperature on the performance of the combined system are examined numerically. It is found that the performance of the TPV converter can be enhanced by using the TEG. The percentage increment of the maximum power output density is larger than that of the maximum efficiency. There are optimally working regions of the converter voltage, dimensionless current, and band gap energy. The elevated emitter temperature results in the increase of the power output density of the combined system. However, there is an optimal emitter temperature that yields the maximum efficiency of the combined system. Moreover, the TEG is not suitable to harvest the heat produced in the TPV converter when the emitter temperature is sufficiently high.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Green, M. A. , 2002, “ Third Generation Photovoltaics: Solar Cells for 2020 and Beyond,” Physica E, 14(1–2), pp. 65–70. [CrossRef]
Datas, A. , and Martí, A. , 2017, “ Thermophotovoltaic Energy in Space Applications: Review and Future Potential,” Sol. Energy Mater. Sol. Cells, 161, pp. 285–296. [CrossRef]
Wernsman, B. , Siergiej, R. R. , Link, S. D. , Mahorter, R. G. , Palmisiano, M. N. , Wehrer, R. J. , Schultz, R. W. , Schmuck, G. P. , Messham, R. L. , Murrary, S. , Murray, C. S. , Newman, F. , Taylor, D. , DePoy, D. M. , and Rahmlow, T. , 2004, “ Greater Than 20% Radiant Heat Conversion Efficiency of a Thermophotovoltaic Radiator/Module System Using Reflective Spectral Control,” IEEE Trans. Electron. Devices, 51(3), pp. 512–515. [CrossRef]
Datas, A. , 2015, “ Optimum Semiconductor Bandgaps in Single Junction and Multijunction Thermophotovoltaic Converters,” Sol. Energy Mater. Sol. Cells, 134, pp. 275–290. [CrossRef]
Yang, Z. , Peng, W. , Liao, T. , Zhao, Y. , Lin, G. , and Chen, J. , 2017, “ An Efficient Method Exploiting the Waste Heat From a Direct Carbon Fuel Cell by Means of a Thermophotovoltaic Cell,” Energy Convers. Manage, 149(1), pp. 424–431. [CrossRef]
Zenker, M. , Heinzel, A. , Stollwerck, G. , Ferber, J. , and Luther, J. , 2001, “ Efficiency and Power Density Potential of Combustion-Driven Thermophotovoltaic Systems Using GaSb Photovoltaic Cells,” IEEE Trans. Electron Devices, 48(2), pp. 367–376. [CrossRef]
Crowley, C. J. , Elkouh, N. A. , Murray, S. , and Chubb, D. L. , 2005, “ Thermophotovoltaic Converter Performance for Radioisotope Power Systems,” Space Technology and Applications International Forum (STAIF), Albuquerque, NM, Feb. 13–17, pp. 601–614.
Chaudhuri, T. K. , 1992, “ A Solar Thermophotovoltaic Converter Using Pbs Photovoltaic Cells,” Int. J. Energy Res., 16(6), pp. 481–487. [CrossRef]
Wang, C. A. , Choi, H. K. , Ransom, S. L. , Charache, G. W. , Danielson, L. R. , and DePoy, D. M. , 1999, “ High-Quantum-Efficiency 0.5 eV GaInAsSb/GaSb Thermophotovoltaic Devices,” Appl. Phys. Lett., 75(9), pp. 1305–1307. [CrossRef]
Nam, Y. , Yeng, Y. X. , Lenert, A. , Bermel, P. , Celanovic, I. , Soljačić, M. , and Wang, E. N. , 2014, “ Solar Thermophotovoltaic Energy Conversion Systems With Two-Dimensional Tantalum Photonic Crystal Absorbers and Emitters,” Sol. Energy Mater. Sol. Cells, 122, pp. 287–296. [CrossRef]
Bernardi, M. P. , Dupré, O. , Blandre, E. , Chapuis, P. O. , Vaillon, R. , and Francoeur, M. , 2015, “ Impacts of Propagating, Frustrated and Surface Modes on Radiative, Electrical and Thermal Losses in Nanoscale-Gap Thermophotovoltaic Power Generators,” Sci. Rep., 5(1), p. 11626. [CrossRef] [PubMed]
Yang, Z. , Wang, J. , Chen, X. , and Lin, G. , 2018, “ Parametric Optimum Design Criteria of a Thermophotovoltaic Cell,” Environ. Prog. Sustainable Energy, 37(1), pp. 513–517. [CrossRef]
Fesharaki, V. J. , Dehghani, M. , Fesharaki, J. J. , and Tavasoli, H. , 2011, “ The Effect of Temperature on Photovoltaic Cell Efficiency,” First International Conference on Emerging Trends in Energy Conservation (ETEC), Tehran, Iran, Nov. 20–21, pp. 20–21.
Crane, D. T. , and Bell, L. E. , 2009, “ Design to Maximize Performance of a Thermoelectric Power Generator With a Dynamic Thermal Power Source,” ASME J. Energy Resour. Technol., 131(1), p. 012401. [CrossRef]
Schock, H. , Brereton, G. , Case, E. , D'Angelo, J. , Hogan, T. , Lyle, M. , Maloney, R. , Moran, K. , Novak, J. , Nelson, C. , Panayi, A. , Ruckle, T. , Sakamoto, J. , Shih, T. , Timm, E. , Zhang, L. , and Zhu, G. , 2013, “ Prospects for Implementation of Thermoelectric Generators as Waste Heat Recovery Systems in Class 8 Truck Applications,” ASME J. Energy Resour. Technol., 135(2), p. 022001. [CrossRef]
Hendricks, T. J. , 2007, “ Thermal System Interactions in Optimizing Advanced Thermoelectric Energy Recovery Systems,” ASME J. Energy Resour. Technol., 129(3), pp. 223–231. [CrossRef]
Lin, J. , Liao, T. , and Lin, B. , 2015, “ Performance Analysis and Load Matching of a Photovoltaic–Thermoelectric Hybrid System,” Energy Convers. Manage, 105(15), pp. 891–899. [CrossRef]
Yang, P. , Zhu, Y. , Zhang, P. , Zhang, H. C. , Hu, Z. , and Zhang, J. , 2014, “ Performance Evaluation of an Alkaline Fuel Cell/Thermoelectric Generator Hybrid System,” Int. J. Hydrogen Energy, 39(22), pp. 11756–11762. [CrossRef]
Van Sark, W. , 2011, “ Feasibility of Photovoltaic–Thermoelectric Hybrid Modules,” Appl. Energy, 88(8), pp. 2785–2790. [CrossRef]
Dallan, B. S. , Schumann, J. , and Lesage, F. J. , 2015, “ Performance Evaluation of a Photoelectric–Thermoelectric Cogeneration Combined System,” Sol. Energy, 118, pp. 276–285. [CrossRef]
Lin, W. , Shih, T. M. , Zheng, J. C. , Zhang, Y. , and Chen, J. , 2014, “ Coupling of Temperatures and Power Outputs in Hybrid Photovoltaic and Thermoelectric Modules,” Int. J. Heat Mass Transfer, 74, pp. 121–127. [CrossRef]
Qiu, K. , and Hayden, A. C. S. , 2012, “ Development of a Novel Cascading TPV and TE Power Generation System,” Appl. Energy, 91(1), pp. 304–308. [CrossRef]
Huen, P. , and Daoud, W. A. , 2017, “ Advances in Hybrid Solar Photovoltaic and Thermoelectric Generators,” Renewable Sustainable Energy Rev., 72, pp. 1295–1302. [CrossRef]
Bjørk, R. , 2015, “ The Universal Influence of Contact Resistance on the Efficiency of a Thermoelectric Generator,” J. Electron. Mater., 44(8), pp. 2869–2876. [CrossRef]
Hapenciuc, C. L. , Borca-Tasciuc, T. , and Mihailescu, I. N. , 2017, “ The Relationship Between the Thermoelectric Generator Efficiency and the Device Engineering Figure of Merit Zd,eng. The Maximum Efficiency η Max,” AIP Adv., 7(4), p. 045007. [CrossRef]
Datas, A. , and Algora, C. , 2010, “ Detailed Balance Analysis of Solar Thermophotovoltaic Systems Made Up of Single Junction Photovoltaic Cells and Broadband Thermal Emitters,” Sol. Energy Mater. Sol. Cells, 94(12), pp. 2137–2147. [CrossRef]
Fuqiang, C. , Yanji, H. , and Chao, Z. , 2014, “ A Physical Model for Thermoelectric Generators With and Without Thomson Heat,” ASME J. Energy Resour. Technol., 136(1), p. 011201. [CrossRef]
Chen, X. , Pan, Y. , and Chen, J. , 2010, “ Performance and Evaluation of a Fuel Cell–Thermoelectric Generator Combined System,” Fuel Cells, 10(6), pp. 1164–1170. [CrossRef]
Riffat, S. B. , Ma, X. , and Wilson, R. , 2006, “ Performance Simulation and Experimental Testing of a Novel Thermoelectric Heat Pump System,” Appl. Therm. Eng., 26(5–6), pp. 494–501. [CrossRef]
Ahiska, R. , and Ahiska, K. , 2010, “ New Method for Investigation of Parameters of Real Thermoelectric Modules,” Energy Convers. Manage., 51(2), pp. 338–345. [CrossRef]
Mansouri, N. , Timm, E. J. , Schock, H. J. , Sahoo, D. , and Kotrba, A. , 2016, “ Development of a Circular Thermoelectric Skutterudite Couple Using Compression Technology,” ASME J. Energy Resour. Technol., 138(5), p. 052003. [CrossRef]
Chen, J. , and Wu, C. , 2000, “ Analysis on the Performance of a Thermoelectric Generator,” ASME J. Energy Resour. Technol., 122(2), pp. 61–63. [CrossRef]
Datas, A. , and Algora, C. , 2013, “ Global Optimization of Solar Thermophotovoltaic Systems,” Prog. Photovoltaics Res. Appl., 21(5), pp. 1040–1055.

Figures

Grahic Jump Location
Fig. 1

The schematic diagram of the TPV–TEG combined system

Grahic Jump Location
Fig. 2

Three-dimensional graphs of the (a) efficiency η (b) power output density P*, and temperatures of the (c) PV cell as well as the (d) hot- and (e) cold-sides of the TEG varying with the converter voltage Vc and dimensionless current ig for a=0.8, Te=1300 K, and Eg=0.40 eV

Grahic Jump Location
Fig. 3

The efficiency η and the power output density P* versus: (a) the converter voltage and (b) the dimensionless current for a=0.8, Te=1300 K, and Eg=0.40 eV, where ig and Vc have been optimized, respectively

Grahic Jump Location
Fig. 4

The efficiency and the power output density versus the band gap energy Eg for a=0.8 and Te=1300 K, where Vc and ig have been optimized, Eg,p is the optimal band gap energy at the maximum power output density Pmax* of the combined system, and Eg,η is the optimal band gap energy at the maximum efficiency ηmax of the combined system

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In