0
Review Article

Developments in Fermentative Butanol Production as an Alternative Biofuel Source

[+] Author and Article Information
Kit Wayne Chew

Department of Chemical and
Environmental Engineering,
Faculty of Engineering,
University of Nottingham Malaysia Campus,
Jalan Broga,
Semenyih 43500, Selangor Darul Ehsan, Malaysia;
Bioseparation Research Group,
Faculty of Engineering,
University of Nottingham Malaysia Campus,
Jalan Broga,
Semenyih 43500,
Selangor Darul Ehsan, Malaysia
e-mail: kitwayne.chew@gmail.com

Jing Ying Yap

Department of Chemical and
Environmental Engineering,
Faculty of Engineering,
University of Nottingham Malaysia Campus,
Jalan Broga,
Semenyih 43500, Selangor Darul Ehsan, Malaysia
e-mail: ying930907@gmail.com

Siti Sabariah Din

Bioseparation Research Group,
Faculty of Engineering,
University of Nottingham Malaysia Campus,
Jalan Broga,
Semenyih 43500, Selangor Darul Ehsan, Malaysia;
Institute of Graduate Studies,
University of Malaya,
Kuala Lumpur 50603, Malaysia
e-mail: sitisabariah18@gmail.com

Tau Chuan Ling

Institute of Biological Sciences,
University of Malaya,
Kuala Lumpur 50603, Malaysia
e-mail: tcling@um.edu.my

Purushothaman Monash

School of Civil and Chemical Engineering,
Department of Chemical Engineering,
VIT University,
Vellore 632014, Tamilnadu, India
e-mail: monash.purushothaman@vit.ac.in

Pau Loke Show

Department of Chemical and
Environmental Engineering,
Faculty of Engineering,
University of Nottingham Malaysia Campus,
Jalan Broga,
Semenyih 43500, Selangor Darul Ehsan, Malaysia;
Bioseparation Research Group,
Faculty of Engineering,
University of Nottingham Malaysia Campus,
Jalan Broga,
Semenyih 43500, Selangor Darul Ehsan, Malaysia
e-mail: PauLoke.Show@nottingham.edu.my

1Corresponding author.

Contributed by the Advanced Energy Systems Division of ASME for publication in the JOURNAL OF ENERGY RESOURCES TECHNOLOGY. Manuscript received July 11, 2017; final manuscript received March 16, 2018; published online April 9, 2018. Assoc. Editor: Yaning Zhang.

J. Energy Resour. Technol 140(4), 040801 (Apr 09, 2018) (8 pages) Paper No: JERT-17-1351; doi: 10.1115/1.4039737 History: Received July 11, 2017; Revised March 16, 2018

Biobutanol is an attractive, economical, and sustainable alternative fuel to petroleum oil which are depleting in sources due to the diminishing oil reserves and creating an increase in the concentrations of greenhouse gases in the atmosphere. Alternative routes to sustainable bacterial fermentation for the production of biobutanol are being sought and prepared for commercialization. The challenges for implementing an economically competitive fermentation process for biobutanol production include the availability of cheaper feedstock by improvement toward large-scaled production, improvement of fermentation efficiency, and better strategies for solvent recovery. The development of biobutanol production was analyzed and various methods to increase the fermentative butanol production were discussed in detail. It was found that the implementations of metabolic engineering of the Clostridia sp., advanced fermentation techniques, and utilization of renewed substrates are among the potential and economically viable technology in the production butanol production. Besides, this review outlines several challenges and potential future work for the advancement of fermentative butanol production.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Jin, C. , Yao, M. , Liu, H. , Chia-fon, F. L. , and Ji, J. , 2011, “Progress in the Production and Application of n-Butanol as a Biofuel,” Renewable Sustainable Energy Rev., 15(8), pp. 4080–4106. [CrossRef]
Willette, P. J. , Shaffer, B. , and Samuelsen, G. S. , 2015, “Systematic Selection and Siting of Vehicle Fueling Infrastructure to Synergistically Meet Future Demands for Alternative Fuels,” ASME J. Energy Resour. Technol., 137(6), p. 062204. [CrossRef]
Karabaş, H. , 2013, “Acorn (Quercus Frainetto L.) Kernel Oil as an Alternative Feedstock for Biodiesel Production in Turkey,” ASME J. Energy Resour. Technol., 135(1), p. 011202. [CrossRef]
Cadrazco, M. , Agudelo, J. R. , Orozco, L. Y. , and Estrada, V. , 2017, “Genotoxicity of Diesel Particulate Matter Emitted by Port-Injection of Hydrous Ethanol and n-Butanol,” ASME J. Energy Resour. Technol., 139(4), p. 042207. [CrossRef]
Nigam, P. S. , and Singh, A. , 2011, “Production of Liquid Biofuels From Renewable Resources,” Prog. Energy Combust. Sci., 37(1), pp. 52–68. [CrossRef]
Zhu, Y. , Xin, F. , Chang, Y. , Zhao, Y. , and Weichong, W. , 2015, “Feasibility of Reed for Biobutanol Production Hydrolyzed by Crude Cellulase,” Biomass Bioenergy, 76, pp. 24–30. [CrossRef]
Escobar, J. C. , Lora, E. S. , Venturini, O. J. , Yáñez, E. E. , Castillo, E. F. , and Almazan, O. , 2009, “Biofuels: Environment, Technology and Food Security,” Renewable Sustainable Energy Rev., 13(6–7), pp. 1275–1287. [CrossRef]
Patil, V. , Tran, K.-Q. , and Giselrød, H. R. , 2008, “Towards Sustainable Production of Biofuels From Microalgae,” Int. J. Mol. Sci., 9(7), pp. 1188–1195. [CrossRef] [PubMed]
Yanai, T. , Han, X. , Reader, G. T. , Zheng, M. , and Tjong, J. , 2015, “Preliminary Investigation of Direct Injection Neat n-Butanol in a Diesel Engine,” ASME J. Energy Resour. Technol., 137(1), p. 012205. [CrossRef]
Maurya, R. K. , and Agarwal, A. K. , 2015, “Combustion and Emission Characterization of n-Butanol Fueled HCCI Engine,” ASME J. Energy Resour. Technol., 137(1), p. 011101. [CrossRef]
Zheng, J. , Tashiro, Y. , Wang, Q. , and Sonomoto, K. , 2015, “Recent Advances to Improve Fermentative Butanol Production: Genetic Engineering and Fermentation Technology,” J. Biosci. Bioeng., 119(1), pp. 1–9. [CrossRef] [PubMed]
Lee, S. Y. , Park, J. H. , Jang, S. H. , Nielsen, L. K. , Kim, J. , and Jung, K. S. , 2008, “Fermentative Butanol Production by Clostridia,” Biotechnol. Bioeng., 101(2), pp. 209–228. [CrossRef] [PubMed]
Dürre, P. , 2007, “Biobutanol: An Attractive Biofuel,” Biotechnol. J., 2(12), pp. 1525–1534. [CrossRef] [PubMed]
Ajanovic, A. , Jungmeier, G. , Beermann, M. , and Haas, R. , 2013, “Driving on Renewables—On the Prospects of Alternative Fuels Up to 2050 From an Energetic Point-of-View in European Union Countries,” ASME J. Energy Resour. Technol., 135(3), p. 031201. [CrossRef]
Sreekumar, S. , Baer, Z. C. , Pazhamalai, A. , Gunbas, G. , Grippo, A. , Blanch, H. W. , Clark, D. S. , and Toste, F. D. , 2015, “Production of an Acetone-Butanol-Ethanol Mixture From Clostridium Acetobutylicum and Its Conversion to High-Value Biofuels,” Nat. Protoc., 10(3), pp. 528–537. [CrossRef] [PubMed]
Green, E. M. , 2011, “Fermentative Production of Butanol—The Industrial Perspective,” Curr. Opin. Biotechnol., 22(3), pp. 337–343. [CrossRef] [PubMed]
Mascal, M. , 2012, “Chemicals From Biobutanol: Technologies and Markets,” Biofuels, Bioprod. Biorefin., 6(4), pp. 483–493. [CrossRef]
Pereira, L. , Dias, M. , Mariano, A. , Maciel Filho, R. , and Bonomi, A. , 2015, “Economic and Environmental Assessment of n-Butanol Production in an Integrated First and Second Generation Sugarcane Biorefinery: Fermentative versus Catalytic Routes,” Appl. Energy, 160, pp. 120–131. [CrossRef]
Wang, Y. , Ho, S.-H. , Yen, H.-W. , Nagarajan, D. , Ren, N.-Q. , Li, S. , Hu, Z. , Lee, D.-J. , Kondo, A. , and Chang, J.-S. , 2017, “Current Advances on Fermentative Biobutanol Production Using Third Generation Feedstock,” Biotechnol. Adv., 35(8), pp. 1049–1059. [CrossRef] [PubMed]
Andersen, V. F. , Anderson, J. , Wallington, T. , Mueller, S. , and Nielsen, O. J. , 2010, “Vapor Pressures of Alcohol−Gasoline Blends,” Energy Fuels, 24(6), pp. 3647–3654. [CrossRef]
Dürre, P. , 2008, “Fermentative Butanol Production,” Ann. New York Acad. Sci., 1125(1), pp. 353–362. [CrossRef]
Ezeji, T. C. , Qureshi, N. , and Blaschek, H. P. , 2007, “Bioproduction of Butanol From Biomass: From Genes to Bioreactors,” Curr. Opin. Biotechnol., 18(3), pp. 220–227. [CrossRef] [PubMed]
Hoekman, S. K. , 2009, “Biofuels in the US–Challenges and Opportunities,” Renewable Energy, 34(1), pp. 14–22. [CrossRef]
Plaza, A. , Merlet, G. , Hasanoglu, A. , Isaacs, M. , Sanchez, J. , and Romero, J. , 2013, “Separation of Butanol From ABE Mixtures by Sweep Gas Pervaporation Using a Supported Gelled Ionic Liquid Membrane: Analysis of Transport Phenomena and Selectivity,” J. Membr. Sci., 444, pp. 201–212. [CrossRef]
Qureshi, N. , and Blaschek, H. , 2001, “Recent Advances in ABE Fermentation: Hyper-Butanol Producing Clostridium Beijerinckii BA101,” J. Ind. Microbiol. Biotechnol., 27(5), pp. 287–291. [CrossRef] [PubMed]
Ladisch, M. R. , 1991, “Fermentation-Derived Butanol and Scenarios for Its Uses in Energy-Related Applications,” Enzyme. Microb. Technol., 13(3), pp. 280–283. [CrossRef]
Ezeji, T. , Milne, C. , Price, N. D. , and Blaschek, H. P. , 2010, “Achievements and Perspectives to Overcome the Poor Solvent Resistance in Acetone and Butanol-Producing Microorganisms,” Appl. Microbiol. Biotechnol., 85(6), pp. 1697–1712. [CrossRef] [PubMed]
Sukumaran, R. , Gottumukkala, L. , Rajasree, K. , Alex, D. , and Pandey, A. , 2011, Butanol Fuel From Biomass: Revisiting ABE Fermentation, Academic Press, Burlington, MA.
Gottwald, M. , and Gottschalk, G. , 1985, “The Internal pH of Clostridium acetobutylicum and Its Effect on the Shift From Acid to Solvent Formation,” Arch. Microbiol., 143(1), pp. 42–46. [CrossRef]
Huang, L. , Gibbins, L. , and Forsberg, C. W. , 1985, “Transmembrane pH Gradient and Membrane Potential in Clostridium Acetobutylicum During Growth Under Acetogenic and Solventogenic Conditions,” Appl. Environ. Microbiol., 50(4), pp. 1043–1047. [PubMed]
Bennett, G. N. , and Rudolph, F. B. , 1995, “The Central Metabolic Pathway From Acetyl-CoA to Butyryl-CoA in Clostridium Acetobutylicum,” FEMS Microbiol. Rev., 17(3), pp. 241–249. [CrossRef]
Fontaine, L. , Meynial-Salles, I. , Girbal, L. , Yang, X. , Croux, C. , and Soucaille, P. , 2002, “Molecular Characterization and Transcriptional Analysis of adhE2, the Gene Encoding the NADH-Dependent Aldehyde/Alcohol Dehydrogenase Responsible for Butanol Production in Alcohologenic Cultures of Clostridium acetobutylicum ATCC 824,” J. Bacteriol., 184(3), pp. 821–830. [CrossRef] [PubMed]
Lépiz-Aguilar, L. , Rodríguez-Rodríguez, C. E. , Arias, M. L. , Lutz, G. , and Ulate, W. , 2011, “Butanol Production by Clostridium Beijerinckii BA101 Using Cassava Flour as Fermentation Substrate: Enzymatic Versus Chemical Pretreatments,” World J. Microbiol. Biotechnol., 27(8), pp. 1933–1939. [CrossRef]
Balan, V. , 2014, “Current Challenges in Commercially Producing Biofuels From Lignocellulosic Biomass,” ISRN Biotechnol., 2014, p. 463074. [CrossRef] [PubMed]
Majidian, P. , Tabatabaei, M. , Zeinolabedini, M. , Naghshbandi, M. P. , and Chisti, Y. , 2017, “Metabolic Engineering of Microorganisms for Biofuel Production,” Renewable Sustainable Energy Rev., 82(3), pp. 3863–3885.
Cary, J. , Petersen, D. , Papoutsakis, E. , and Bennett, G. , 1990, “Cloning and Expression of Clostridium Acetobutylicum ATCC 824 Acetoacetyl-Coenzyme A: Acetate/Butyrate: Coenzyme A-Transferase in Escherichia Coli,” Appl. Environ. Microbiol., 56(6), pp. 1576–1583. [PubMed]
Tomas, C. A. , Beamish, J. , and Papoutsakis, E. T. , 2004, “Transcriptional Analysis of Butanol Stress and Tolerance in Clostridium Acetobutylicum,” J. Bacteriol., 186(7), pp. 2006–2018. [CrossRef] [PubMed]
Alper, H. , Moxley, J. , Nevoigt, E. , Fink, G. R. , and Stephanopoulos, G. , 2006, “Engineering Yeast Transcription Machinery for Improved Ethanol Tolerance and Production,” Science, 314(5805), pp. 1565–1568. [CrossRef] [PubMed]
Papoutsakis, E. T. , 2008, “Engineering Solventogenic Clostridia,” Curr. Opin. Biotechnol., 19(5), pp. 420–429. [CrossRef] [PubMed]
Lin, Y.-L. , and Blaschek, H. P. , 1983, “Butanol Production by a Butanol-Tolerant Strain of Clostridium Acetobutylicum in Extruded Corn Broth,” Appl. Environ. Microbiol., 45(3), pp. 966–973. [PubMed]
Tummala, S. B. , Junne, S. G. , and Papoutsakis, E. T. , 2003, “Antisense RNA Downregulation of Coenzyme a Transferase Combined With Alcohol-Aldehyde Dehydrogenase Overexpression Leads to Predominantly Alcohologenic Clostridium acetobutylicum Fermentations,” J. Bacteriol., 185(12), pp. 3644–3653. [CrossRef] [PubMed]
Artış, Ü. , 2008, “Enhanced Butanol Production by Mutant Strains of Clostridium Acetobutylicum in Molasses Medium,” Turk. J. Biochem., 33(1), pp. 25–30.
Annous, B. A. , and Blaschek, H. P. , 1991, “Isolation and Characterization of Clostridium Acetobutylicum Mutants With Enhanced Amylolytic Activity,” Appl. Environ. Microbiol., 57(9), pp. 2544–2548. [PubMed]
Jiang, Y. , Xu, C. , Dong, F. , Yang, Y. , Jiang, W. , and Yang, S. , 2009, “Disruption of the Acetoacetate Decarboxylase Gene in Solvent-Producing Clostridium Acetobutylicum Increases the Butanol Ratio,” Metab. Eng., 11(4–5), pp. 284–291. [CrossRef] [PubMed]
Lee, S.-H. , Kim, S. , Kim, J. Y. , Cheong, N. Y. , and Kim, K. H. , 2016, “Enhanced Butanol Fermentation Using Metabolically Engineered Clostridium Acetobutylicum With Ex Situ Recovery of Butanol,” Bioresour. Technol., 218, pp. 909–917. [CrossRef] [PubMed]
Dusséaux, S. , Croux, C. , Soucaille, P. , and Meynial-Salles, I. , 2013, “Metabolic Engineering of Clostridium Acetobutylicum ATCC 824 for the High-Yield Production of a Biofuel Composed of an Isopropanol/Butanol/Ethanol Mixture,” Metab. Eng., 18, pp. 1–8. [CrossRef] [PubMed]
Liu, D. , Chen, Y. , Ding, F. , Guo, T. , Xie, J. , Zhuang, W. , Niu, H. , Shi, X. , Zhu, C. , and Ying, H. , 2015, “Simultaneous Production of Butanol and Acetoin by Metabolically Engineered Clostridium Acetobutylicum,” Metab. Eng., 27, pp. 107–114. [CrossRef] [PubMed]
Nanda, S. , Golemi-Kotra, D. , McDermott, J. C. , Dalai, A. K. , Gökalp, I. , and Kozinski, J. A. , 2017, “Fermentative Production of Butanol: Perspectives on Synthetic Biology,” New Biotechnol., 37(Pt. B), pp. 210–221. [CrossRef]
Qureshi, N. , Saha, B. C. , Hector, R. E. , Hughes, S. R. , and Cotta, M. A. , 2008, “Butanol Production From Wheat Straw by Simultaneous Saccharification and Fermentation Using Clostridium Beijerinckii—Part I: Batch Fermentation,” Biomass Bioenergy, 32(2), pp. 168–175. [CrossRef]
Ezeji, T. , Qureshi, N. , and Blaschek, H. , 2004, “Acetone Butanol Ethanol (ABE) Production From Concentrated Substrate: Reduction in Substrate Inhibition by Fed-Batch Technique and Product Inhibition by Gas Stripping,” Appl. Microbiol. Biotechnol., 63(6), pp. 653–658. [CrossRef] [PubMed]
Ni, Y. , and Sun, Z. , 2009, “Recent Progress on Industrial Fermentative Production of Acetone–Butanol–Ethanol by Clostridium Acetobutylicum in China,” Appl. Microbiol. Biotechnol., 83(3), p. 415–423. [CrossRef] [PubMed]
Qureshi, N. , Schripsema, J. , Lienhardt, J. , and Blaschek, H. , 2000, “Continuous Solvent Production by Clostridium Beijerinckii BA101 Immobilized by Adsorption Onto Brick,” World J. Microbiol. Biotechnol., 16(4), pp. 377–382. [CrossRef]
Kumar, M. , and Gayen, K. , 2011, “Developments in Biobutanol Production: New Insights,” Appl. Energy, 88(6), pp. 1999–2012. [CrossRef]
Ezeji, T. C. , Qureshi, N. , and Blaschek, H. P. , 2004, “Butanol Fermentation Research: Upstream and Downstream Manipulations,” Chem. Rec., 4(5), pp. 305–314. [CrossRef] [PubMed]
Jones, D. T. , and Woods, D. R. , 1986, “Acetone-Butanol Fermentation Revisited,” Microbiol. Rev., 50(4), pp. 484–524. [PubMed]
Schmidt, G. A. , Ruedy, R. A. , Miller, R. L. , and Lacis, A. A. , 2010, “Attribution of the Present‐Day Total Greenhouse Effect,” J. Geophys. Res. Atmos., 115(D20), p. D20106. [CrossRef]
Desai, R. P. , Nielsen, L. K. , and Papoutsakis, E. T. , 1999, “Stoichiometric Modeling of Clostridium Acetobutylicum Fermentations With Non-Linear Constraints,” J. Biotechnol., 71(1–3), pp. 191–205. [CrossRef] [PubMed]
Wang, S. , Dong, S. , Wang, P. , Tao, Y. , and Wang, Y. , 2017, “Genome Editing in Clostridium Saccharoperbutylacetonicum N1-4 With the CRISPR-Cas9 System,” Appl. Environ. Microbiol., 83(10), p. e00233-17. [CrossRef] [PubMed]
Wang, Y. , Zhang, Z.-T. , Seo, S.-O. , Lynn, P. , Lu, T. , Jin, Y.-S. , and Blaschek, H. P. , 2016, “Bacterial Genome Editing With CRISPR-Cas9: Deletion, Integration, Single Nucleotide Modification, and Desirable ‘Clean’ Mutant Selection in Clostridium Beijerinckii as an Example,” ACS Synth. Biol., 5(7), pp. 721–732. [CrossRef] [PubMed]
Pyrgakis, K. A. , de Vrije, T. , Budde, M. A. , Kyriakou, K. , López-Contreras, A. M. , and Kokossis, A. C. , 2016, “A Process Integration Approach for the Production of Biological Iso-Propanol, Butanol and Ethanol Using Gas Stripping and Adsorption as Recovery Methods,” Biochem. Eng. J., 116, pp. 176–194. [CrossRef]
Oudshoorn, A. , van der Wielen, L. A. , and Straathof, A. J. , 2009, “Adsorption Equilibria of Bio-Based Butanol Solutions Using Zeolite,” Biochem. Eng. J., 48(1), pp. 99–103. [CrossRef]
Qureshi, N. , and Blaschek, H. P. , 1999, “Production of Acetone Butanol Ethanol (ABE) by a Hyper‐Producing Mutant Strain of Clostridium Beijerinckii BA101 and Recovery by Pervaporation,” Biotechnol. Prog., 15(4), pp. 594–602. [CrossRef] [PubMed]
Qureshi, N. , and Maddox, I. , 2005, “Reduction in Butanol Inhibition by Perstraction: Utilization of Concentrated Lactose/Whey Permeate by Clostridium Acetobutylicum to Enhance Butanol Fermentation Economics,” Food Bioprod. Process, 83(1), pp. 43–52. [CrossRef]
Dong, Z. , Liu, G. , Liu, S. , Liu, Z. , and Jin, W. , 2014, “High Performance Ceramic Hollow Fiber Supported PDMS Composite Pervaporation Membrane for Bio-Butanol Recovery,” J. Membr. Sci., 450, pp. 38–47. [CrossRef]
Wang, X. , Chen, J. , Fang, M. , Wang, T. , Yu, L. , and Li, J. , 2016, “ZIF-7/PDMS Mixed Matrix Membranes for Pervaporation Recovery of Butanol From Aqueous Solution,” Sep. Purif. Technol., 163, pp. 39–47. [CrossRef]
Qureshi, N. , Hodge, D. , and Vertes, A. , 2014, Biorefineries: Integrated Biochemical Processes for Liquid Biofuels, Elsevier, Amsterdam, The Netherlands.
Diltz, R. A. , Marolla, T. V. , Henley, M. V. , and Li, L. , 2007, “Reverse Osmosis Processing of Organic Model Compounds and Fermentation Broths,” Bioresour. Technol., 98(3), pp. 686–695. [CrossRef] [PubMed]
Bousbaa, H. , Sary, A. , Tazerout, M. , and Liazid, A. , 2012, “Investigations on a Compression Ignition Engine Using Animal Fats and Vegetable Oil as Fuels,” ASME J. Energy Resour. Technol., 134(2), p. 022202. [CrossRef]
Soloiu, V. , Duggan, M. , Ochieng, H. , Williams, D. , Molina, G. , and Vlcek, B. , 2013, “Investigation of Low Temperature Combustion Regimes of Biodiesel With n-Butanol Injected in the Intake Manifold of a Compression Ignition Engine,” ASME J. Energy Resour. Technol., 135(4), p. 041101. [CrossRef]
Ezeji, T. , Qureshi, N. , and Blaschek, H. P. , 2007, “Butanol Production From Agricultural Residues: Impact of Degradation Products on Clostridium beijerinckii Growth and Butanol Fermentation,” Biotechnol. Bioeng., 97(6), pp. 1460–1469. [CrossRef] [PubMed]
Wang, L. , and Chen, H. , 2011, “Increased Fermentability of Enzymatically Hydrolyzed Steam-Exploded Corn Stover for Butanol Production by Removal of Fermentation Inhibitors,” Process Biochem., 46(2), pp. 604–607. [CrossRef]
Cho, D. H. , Shin, S.-J. , Sang, B.-I. , Eom, M.-H. , and Kim, Y. H. , 2013, “ABE Production From Yellow Poplar Through Alkaline Pre-Hydrolysis, Enzymatic Saccharification, and Fermentation,” Biotechnol. Bioprocess Eng., 18(5), pp. 965–971. [CrossRef]
Claassen, P. A. , Budde, M. A. , and López-Contreras, A. M. , 2000, “Acetone, Butanol and Ethanol Production From Domestic Organic Waste by Solventogenic Clostridia,” J. Mol. Microbiol. Biotechnol., 2(1), pp. 39–44. [PubMed]
Lu, C. , Dong, J. , and Yang, S.-T. , 2013, “Butanol Production From Wood Pulping Hydrolysate in an Integrated Fermentation–Gas Stripping Process,” Bioresour. Technol., 143, pp. 467–475. [CrossRef] [PubMed]
Wang, Y. , and Blaschek, H. P. , 2011, “Optimization of Butanol Production From Tropical Maize Stalk Juice by Fermentation With Clostridium Beijerinckii NCIMB 8052,” Bioresour. Technol., 102(21), pp. 9985–9990. [CrossRef] [PubMed]
Qureshi, N. , Saha, B. C. , Dien, B. , Hector, R. E. , and Cotta, M. A. , 2010, “Production of Butanol (a Biofuel) From Agricultural Residues—Part I: Use of Barley Straw Hydrolysate,” Biomass Bioenergy, 34(4), pp. 559–565. [CrossRef]
Gao, K. , and Rehmann, L. , 2014, “ABE Fermentation From Enzymatic Hydrolysate of NaOH-Pretreated Corncobs,” Biomass Bioenergy, 66, pp. 110–115. [CrossRef]
Sarchami, T. , and Rehmann, L. , 2014, “Optimizing Enzymatic Hydrolysis of Inulin From Jerusalem Artichoke Tubers for Fermentative Butanol Production,” Biomass Bioenergy, 69, pp. 175–182. [CrossRef]
Al-Shorgani, N. K. N. , Kalil, M. S. , Ali, E. , Hamid, A. A. , and Yusoff, W. M. W. , 2012, “The Use of Pretreated Palm Oil Mill Effluent for Acetone–Butanol–Ethanol Fermentation by Clostridium Saccharoperbutylacetonicum N1-4,” Clean Technol. Environ. Policy, 14(5), pp. 879–887. [CrossRef]
Al-Shorgani, N. K. N. , Kalil, M. S. , and Yusoff, W. M. W. , 2012, “Biobutanol Production From Rice Bran and De-Oiled Rice Bran by Clostridium Saccharoperbutylacetonicum N1-4,” Bioprocess Biosyst. Eng., 35(5), pp. 817–826. [CrossRef] [PubMed]
Malaviya, A. , Jang, Y.-S. , and Lee, S. Y. , 2012, “Continuous Butanol Production With Reduced Byproducts Formation From Glycerol by a Hyper Producing Mutant of Clostridium pasteurianum,” Appl. Microbiol. Biotechnol., 93(4), pp. 1485–1494. [CrossRef] [PubMed]
Ndaba, B. , Chiyanzu, I. , and Marx, S. , 2015, “n-Butanol Derived From Biochemical and Chemical Routes: A Review,” Biotechnol. Rep., 8, pp. 1–9. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Metabolic pathways in ABE fermentation by Clostridium

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In