Archibold,
A. R.
,
Bhardwaj,
A.
,
Rahman,
M.
,
Goswami,
Y.
, and
Stefanakos,
E.
, 2016, “
Comparison of Numerical and Experimental Assessment of a Latent Heat Energy Storage Module for a High-Temperature Phase-Change Material,” ASME J. Energy Resour. Technol.,
138(5), p. 052007.

Hussain,
M. I.
,
Mokheimer,
E. M. A.
, and
Ahmed,
S.
, 2017, “
Optimal Design of a Solar Collector for Required Flux Distribution on a Tubular Receiver,” ASME J. Energy Resour. Technol.,
139(1), p. 012006.

Fang,
J. B.
,
Wei,
J. J.
,
Dong,
X. W.
, and
Wang,
Y. S.
, 2011, “
Thermal Performance Simulation of a Solar Cavity Receiver Under Windy Conditions,” Sol. Energy,
85(1), pp. 126–138.

[CrossRef]
Montes,
M. J.
,
Rovira,
A.
,
Martínez-Val,
J. M.
, and
Ramos,
A.
, 2012, “
Proposal of a Fluid Flow Layout to Improve the Heat Transfer in the Active Absorber Surface of Solar Central Cavity Receivers,” Appl. Therm. Eng.,
35(1), pp. 220–232.

[CrossRef]
Reddy,
K. S.
, and
Kumar,
N. S.
, 2009, “
An Improved Model for Natural Convection Heat Loss From Modified Cavity Receiver of Solar Dish Concentrator,” Sol. Energy,
83(10), pp. 1884–1892.

[CrossRef]
Wang,
F.
,
Shuai,
Y.
,
Yuan,
Y.
,
Yang,
G.
, and
Tan,
H.
, 2010, “
Thermal Stress Analysis of Eccentric Tube Receiver Using Concentrated Solar Radiation,” Sol. Energy,
84(10), pp. 1809–1815.

[CrossRef]
Agrafiotis,
C. C.
,
Mavroidis,
I.
,
Konstandopoulos,
A. G.
,
Hoffschmidt,
B.
,
Stobbe,
P.
,
Romero,
M.
, and
Fernandez-Quero,
V.
, 2007, “
Evaluation of Porous Silicon Carbide Monolithic Honeycombs as Volumetric Receivers/Collectors of Concentrated Solar Radiation,” Sol. Energy Mater. Sol. Cells,
91(6), pp. 474–488.

[CrossRef]
Fend,
T.
,
Hoffschmidt,
B.
,
Pitzpaal,
R.
,
Reutter,
O.
, and
Rietbrock,
P.
, 2002, “
Porous Materials as Open Volumetric Solar Receivers: Experimental Determination of Thermophysical and Heat Transfer Properties,” Energy,
29(5–6), pp. 823–833.

Wu,
Z.
,
Caliot,
C.
,
Bai,
F.
,
Flamant,
G.
,
Wang,
Z.
,
Zhang,
J.
, and
Tian,
C.
, 2010, “
Experimental and Numerical Studies of the Pressure Drop in Ceramic Foams for Volumetric Solar Receiver Applications,” Appl. Energy,
87(2), pp. 504–513.

[CrossRef]
Romkes,
S. J. P.
,
Dautzenberg,
F. M.
,
Bleek,
C. M. V. D.
, and
Calis,
H. P. A.
, 2003, “
CFD Modelling and Experimental Validation of Particle-to-Fluid Mass and Heat Transfer in a Packed Bed at Very Low Channel to Particle Diameter Ratio,” Chem. Eng. J.,
96(1–3), pp. 3–13.

[CrossRef]
Yang,
J.
,
Wang,
Q.
,
Zeng,
M.
, and
Nakayama,
A.
, 2010, “
Computational Study of Forced Convective Heat Transfer in Structured Packed Beds With Spherical or Ellipsoidal Particles,” Chem. Eng. Sci.,
65(2), pp. 726–738.

[CrossRef]
Wu,
Z.
,
Caliot,
C.
,
Flamant,
G.
, and
Wang,
Z.
, 2011, “
Numerical Simulation of Convective Heat Transfer Between Air Flow and Ceramic Foams to Optimise Volumetric Solar Air Receiver Performances,” Int. J. Heat Mass Transfer,
54(7–8), pp. 1527–1537.

[CrossRef]
Akolkar,
A.
, and
Petrasch,
J.
, 2011, “
Tomography Based Pore-Level Optimization of Radiative Transfer in Porous Media,” Int. J. Heat Mass Transfer,
54(23–24), pp. 4775–4783.

[CrossRef]
Wang,
F.
,
Tan,
J.
,
Yong,
S.
,
Tan,
H.
, and
Chu,
S.
, 2014, “
Thermal Performance Analyses of Porous Media Solar Receiver With Different Irradiative Transfer Models,” Int. J. Heat Mass Transfer,
78(11), pp. 7–16.

[CrossRef]
Cheng,
Z. D.
,
He,
Y. L.
, and
Cui,
F. Q.
, 2013, “
Numerical Investigations on Coupled Heat Transfer and Synthetical Performance of a Pressurized Volumetric Receiver With MCRT–FVM Method,” Appl. Therm. Eng.,
50(1), pp. 1044–1054.

[CrossRef]
He,
Y. L.
,
Cui,
F. Q.
,
Cheng,
Z. D.
,
Li,
Z. Y.
, and
Tao,
W. Q.
, 2013, “
Numerical Simulation of Solar Radiation Transmission Process for the Solar Tower Power Plant: From the Heliostat Field to the Pressurized Volumetric Receiver,” Appl. Therm. Eng.,
61(2), pp. 583–595.

[CrossRef]
Zhu,
Q.
, and
Xuan,
Y.
, 2017, “
Pore Scale Numerical Simulation of Heat Transfer and Flow in Porous Volumetric Solar Receivers,” Appl. Therm. Eng.,
120, pp. 150–159.

Gu,
Y.
, and
Oliver,
D. S.
, 2006, “
The Ensemble Kalman Filter for Continuous Updating of Reservoir Simulation Models,” ASME J. Energy Resour. Technol.,
128(1), pp. 79–87.

Luan,
H. B.
,
Xu,
H.
,
Chen,
L.
,
Sun,
D. L.
,
He,
Y. L.
, and
Tao,
W. Q.
, 2011, “
Evaluation of the Coupling Scheme of FVM and LBM for Fluid Flows Around Complex Geometries,” Int. J. Heat Mass Transfer,
54(9–10), pp. 1975–1985.

[CrossRef]
Chong,
H. A.
,
Dilmore,
R.
, and
Wang,
J. Y.
, 2017, “
Modeling of Hydraulic Fracture Propagation in Shale Gas Reservoirs: A Three-Dimensional, Two-Phase Model,” ASME J. Energy Resour. Technol.,
139(1), p. 012903.

Qian,
Y. H.
,
D'Humières,
D.
, and
Lallemand,
P.
, 1992, “
Lattice BGK Models for the Navier-Stokes Equations,” EPL,
17(6), p. 479.

[CrossRef]
Frisch,
U.
,
Hasslacher,
B.
, and
Pomeau,
Y.
, 1986, “
Lattice-Gas Automata for the Navier-Stokes Equation,” Phys. Rev. Lett.,
56(14), pp. 1505–1508.

[CrossRef] [PubMed]
Ma,
X.
,
Mou,
J.
,
Lin,
H.
,
Jiang,
F.
,
Liu,
K.
, and
Zhao,
X.
, 2017, “
Lattice Boltzmann Simulation of Wormhole Propagation in Carbonate Acidizing,” ASME J. Energy Resour. Technol.,
139(4), p. 042002.

Liu,
H.
,
Kang,
Q.
,
Leonardi,
C. R.
,
Schmieschek,
S.
,
Narváez,
A.
,
Jones,
B. D.
,
Williams,
J. R.
,
Valocchi,
A. J.
, and
Harting,
J.
, 2016, “
Multiphase Lattice Boltzmann Simulations for Porous Media Applications,” Comput. Geosci.,
20(4), pp. 777–805.

[CrossRef]
Nabovati,
A.
,
Llewellin,
E. W.
, and
Sousa,
A. C. M.
, 2009, “
A General Model for the Permeability of Fibrous Porous Media Based on Fluid Flow Simulations Using the Lattice Boltzmann Method,” Composites, Part A,
40(6–7), pp. 860–869.

[CrossRef]
Succi,
S.
, 2008, “
Lattice Boltzmann Across Scales: From Turbulence to DNA Translocation,” Eur. Phys. J. B,
64(3–4), pp. 471–479.

[CrossRef]
Cai,
J.
, and
Huai,
X.
, 2010, “
Study on Fluid–Solid Coupling Heat Transfer in Fractal Porous Medium by Lattice Boltzmann Method,” Appl. Therm. Eng.,
30(6–7), pp. 715–723.

[CrossRef]
Liu,
Q.
,
He,
Y. L.
,
Li,
Q.
, and
Tao,
W. Q.
, 2014, “
A Multiple-Relaxation-Time Lattice Boltzmann Model for Convection Heat Transfer in Porous Media,” Int. J. Heat Mass Transfer,
73(6), pp. 761–775.

[CrossRef]
Eshghinejadfard,
A.
,
Daróczy,
L.
,
Janiga,
G.
, and
Thévenin,
D.
, 2016, “
Calculation of the Permeability in Porous Media Using the Lattice Boltzmann Method,” Int. J. Heat Fluid Flow,
62(Pt. A), pp. 93–103.

Dai,
Q.
, and
Yang,
L.
, 2013, “
LBM Numerical Study on Oscillating Flow and Heat Transfer in Porous Media,” Appl. Therm. Eng.,
54(1), pp. 16–25.

[CrossRef]
Su,
Y.
,
Kulacki,
F. A.
, and
Davidson,
J. H.
, 2014, “
Experimental and Numerical Investigations on a Solar Tracking Concentrated Photovoltaic–Thermal System With a Novel Non-Dimensional Lattice Boltzmann Method,” Sol. Energy,
107(9), pp. 145–158.

[CrossRef]
Luo,
L.-S.
, and
L,
P.
, 2000, “
Theory of the Lattice Boltzmann Method: Dispersion, Dissipation, Isotropy, Galilean Invariance, and Stability,” Phys. Rev. E,
61(6), p. 6546.

[CrossRef]
Ma,
Q.
,
Chen,
Z.
, and
Liu,
H.
, 2017, “
Multiple-Relaxation-Time Lattice Boltzmann Simulation for Flow, Mass Transfer, and Adsorption in Porous Media,” Phys. Rev. E,
96(1), p. 013313.

Liu,
Q.
, and
He,
Y. L.
, 2016, “
Lattice Boltzmann Simulations of Convection Heat Transfer in Porous Media,” Phys. A,
465, pp. 742–753.

[CrossRef]
Chen,
L.
,
Kang,
Q.
,
Mu,
Y.
,
He,
Y. L.
, and
Tao,
W. Q.
, 2014, “
A Critical Review of the Pseudopotential Multiphase Lattice Boltzmann Model: Methods and Applications,” Int. J. Heat Mass Transfer,
76(6), pp. 210–236.

[CrossRef]
Girimaji,
S.
, 2011, “
Lattice Boltzmann Method: Fundamentals and Engineering Applications With Computer Codes,” AIAA J.,
51(1), pp. 278–279.

[CrossRef]
Higuera,
F. J.
,
Succi,
S.
, and
Benzi,
R.
, 1989, “
Lattice Gas Dynamics With Enhanced Collisions,” EPL,
9(4), p. 345.

[CrossRef]
Mccracken,
M. E.
, and
Abraham,
J.
, 2005, “
Multiple-Relaxation-Time Lattice-Boltzmann Model for Multiphase Flow,” Phys. Rev. E,
71(3), p. 036701.

[CrossRef]
Zou,
Q.
, and
He,
X.
, 1997, “
On Pressure and Velocity Boundary Conditions for the Lattice Boltzmann BGK Model,” Phys. Fluids,
9(6), pp. 1591–1598.

[CrossRef]
Liu,
C. H.
,
Lin,
K. H.
,
Mai,
H. C.
, and
Lin,
C. A.
, 2010, “
Thermal Boundary Conditions for Thermal Lattice Boltzmann Simulations,” Comput. Math. Appl.,
59(7), pp. 2178–2193.

[CrossRef]
Li,
Q.
,
He,
Y. L.
,
Tang,
G. H.
, and
Tao,
W. Q.
, 2010, “
Improved Axisymmetric Lattice Boltzmann Scheme,” Phys. Rev. E,
81(5), p. 056707.

[CrossRef]
Wang,
J.
,
Wang,
D.
,
Lallemand,
P.
, and
Luo,
L. S.
, 2013, “
Lattice Boltzmann Simulations of Thermal Convective Flows in Two Dimensions,” Comput. Math. Appl.,
65(2), pp. 262–286.

[CrossRef]
Inamuro,
T.
,
Yoshino,
M.
, and
Ogino,
F.
, 1995, “
A Non‐Slip Boundary Condition for Lattice Boltzmann Simulations,” Phys. Fluids,
7(12), pp. 2928–2930.

[CrossRef]
Barlow,
M. T.
, and
Bass,
R. F.
, 1989, “
The Construction of Brownian Motion on the Sierpinski Carpet,” Annales de l'I.H.P. Probabilités et Statistiques,
25(3), pp. 225–257.

Safavisohi,
B.
, and
Sharbati,
E.
, 2007, “
Porosity and Permeability Effects on Centerline Temperature Distributions, Peak Flame Temperature, Flame Structure, and Preheating Mechanism for Combustion in Porous Media,” ASME J. Energy Resour. Technol.,
129(1), pp. 54–65.

[CrossRef]
Roldán,
M. I.
,
Smirnova,
O.
,
Fend,
T.
,
Casas,
J. L.
, and
Zarza,
E.
, 2014, “
Thermal Analysis and Design of a Volumetric Solar Absorber Depending on the Porosity,” Renewable Energy,
62(2), pp. 116–128.

[CrossRef]
Fend,
T.
, 2010, “
High Porosity Materials as Volumetric Receivers for Solar Energetics,” Opt. Appl.,
40(2), pp. 271–284.