0
Research Papers: Energy From Biomass

Mathematical Modeling of a Biomass Steam Gasifier—A Modified Equilibrium Approach

[+] Author and Article Information
Thomas Gröbl

Institute for Energy Systems
and Thermodynamics,
TU-Wien,
Vienna 1060, Austria
e-mail: thomas.groebl@evn-abfallverwertung.at

Heimo Walter

Professor
Mem. ASME
Institute for Energy Systems
and Thermodynamics,
TU-Wien,
Vienna 1060, Austria
e-mail: heimo.walter@tuwien.ac.at

1Corresponding author.

Contributed by the Advanced Energy Systems Division of ASME for publication in the JOURNAL OF ENERGY RESOURCES TECHNOLOGY. Manuscript received July 3, 2017; final manuscript received March 26, 2018; published online April 19, 2018. Assoc. Editor: Oronzio Manca.

J. Energy Resour. Technol 140(4), 041806 (Apr 19, 2018) (18 pages) Paper No: JERT-17-1328; doi: 10.1115/1.4039869 History: Received July 03, 2017; Revised March 26, 2018

A large potential is contributed to the energetic utilization of biomass, whereby thermochemical gasification seems to be especially interesting. In order to contribute to a better understanding of the thermochemical conversion process in the gasifier, mathematical models are used. An intensive effort is made in development of mathematical models describing the gasification process and a large number of models, considerably differing in their degree of simplification, and their applications are reported in literature. In the present article, a brief review of models applied, mainly focused on equilibrium models, is provided and a robust and flexible modified stoichiometric equilibrium model, for modeling a novel gasifier, is presented.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Puig-Arnavat, M. , Bruno, J. C. , and Coronas, A. , 2010, “ Review and Analysis of Biomass Gasification Models,” Renewable Sustainable Energy Rev., 14(9), pp. 2841–2851. [CrossRef]
Gómez-Barea, A. , and Leckner, B. , 2010, “ Modeling of Biomass Gasification in Fluidized Bed,” Prog. Energy Combust. Sci., 36(4), pp. 444–509. [CrossRef]
Baruah, D. , and Baruah, D. , 2014, “ Modeling of Biomass Gasification: A Review,” Renewable Sustainable Energy Rev., 39, pp. 806–815. [CrossRef]
Patra, T. K. , and Sheth, P. N. , 2015, “ Biomass Gasification Models for Downdraft Gasifier: A State-of-the-Art Review,” Renewable Sustainable Energy Rev., 50, pp. 583–593. [CrossRef]
Villetta, M. L. , Costa, M. , and Massarotti, N. , 2017, “ Modelling Approaches to Biomass Gasification: A Review With Emphasis on the Stoichiometric Method,” Renewable Sustainable Energy Rev., 74, pp. 71–88. [CrossRef]
Smith, J. M. , Van Ness, H. C. , and Abbott, M. M. , 2005, Introduction to Chemical Engineering Thermodynamics, 7th ed., McGraw-Hill, New York.
Baehr, H. D. , and Kabelac, S. , 2006, Thermodynamik - Grundlagen Und Technische Anwendungen, 13th ed., Springer-Verlag, Berlin.
Florin, N. H. , and Harris, A. T. , 2007, “ Hydrogen Production From Biomass Coupled With Carbon Dioxide Capture: The Implications of Thermodynamic Equilibrium,” Int. J. Hydrogen Energy, 32(17), pp. 4119–4134. [CrossRef]
Prins, M. J. , Ptasinski, K. J. , and Janssen, F. J. J. G. , 2003, “ Thermodynamics of Gas-Char Reactions: First and Second Law Analysis,” Chem. Eng. Sci., 58(3–6), pp. 1003–1011. [CrossRef]
Mirmoshtaghi, G. , Li, H. , Thorin, E. , and Dahlquist, E. , 2016, “ Evaluation of Different Biomass Gasification Modeling Approaches for Fluidized Bed Gasifiers,” Biomass Bioenergy, 91, pp. 69–82. [CrossRef]
Prins, M. J. , Ptasinski, K. J. , and Janssen, F. J. J. G. , 2007, “ From Coal to Biomass Gasification: Comparison of Thermodynamic Efficiency,” Energy, 32(7), pp. 1248–1259. [CrossRef]
Sharma, A. K. , 2008, “ Equilibrium Modeling of Global Reduction Reactions for a Downdraft (Biomass) Gasifier,” Energy Convers. Manage., 49(4), pp. 832–842. [CrossRef]
Vitasari, C. R. , Jurascik, M. , and Ptasinskiv, K. J. , 2011, “ Exergy Analysis of Biomass-to-Synthetic Natural Gas (SNG) Process Via Indirect Gasification of Various Biomass Feedstock,” Energy, 36(6), pp. 3825–3837. [CrossRef]
Buragohain, B. , Mahanta, P. , and Moholkar, V. S. , 2010, “ Thermodynamic Optimization of Biomass Gasification for Decentralized Power Generation and Fischer-Tropsch Synthesis,” Energy, 35(6), pp. 2557–2579. [CrossRef]
Melgar, A. , Prez, J. F. , Laget, H. , and Horillo, A. , 2007, “ Thermochemical Equilibrium Modelling of a Gasifying Process,” Energy Convers. Manage., 48(1), pp. 59–67. [CrossRef]
Mathieu, P. , and Dubuisson, R. , 2002, “ Performance Analysis of a Biomass Gasifier,” Energy Convers. Manage., 43(9–12), pp. 129–1299.
Haryanto, A. , Fernando, S. D. , Pordesimo, L. O. , and Adhikari, S. , 2009, “ Upgrading of Syngas Derived From Biomass Gasification: A Thermodynamic Analysis,” Biomass Bioenergy, 33(5), pp. 882–889. [CrossRef]
Rodriguez-Alejandro, D. A. , Nam, H. , Maglinao, A. L. , Capareda, S. C. , and Aguilera-Alvarado, A. F. , 2016, “ Development of a Modified Equilibrium Model for Biomass Pilot-Scale Fluidized Bed Gasifier Performance Predictions,” Energy, 115(Pt. 1), pp. 1092–1108. [CrossRef]
Li, X. , Grace, J. R. , Watkinson, A. P. , Lim, C. J. , and Ergüdenler, A. , 2001, “ Equilibrium Modeling of Gasification: A Free Energy Minimization Approach and Its Application to a Circulating Fluidized Bed Coal Gasifier,” Fuel, 80(2), pp. 195–207. [CrossRef]
Li, X. T. , Grace, J. R. , Lim, C. J. , Watkinson, A. P. , Chen, H. P. , and Kim, J. R. , 2004, “ Biomass Gasification in a Circulating Fluidized Bed,” Biomass Bioenergy, 26(2), pp. 171–193. [CrossRef]
Gröbl, T. , Walter, H. , and Haider, M. , 2012, “ Biomass Steam Gasification for Production of SNG—Process Design and Sensitivity Analysis,” Appl. Energy, 97, pp. 451–461. [CrossRef]
Schuster, G. , Löffler, G. , Weigl, K. , and Hofbauer, H. , 2001, “ Biomass Steam Gasification—An Extensive Parametric Modeling Study,” Bioresour. Technol., 77(1), pp. 71–79. [CrossRef] [PubMed]
Panopoulos, K. D. , Fryda, L. E. , Karl, J. , Poulou, S. , and Kakaras, E. , 2006, “ High Temperature Solid Oxide Fuel Cell Integrated With Novel Allothermal Biomass Gasification—Part I: Modelling and Feasibility Study,” J. Power Sources, 159(1), pp. 570–585. [CrossRef]
Fryda, L. , Panopoulos, K. , Karl, J. , and Kakaras, E. , 2008, “ Exergetic Analysis of Solid Oxide Fuel Cell and Biomass Gasification Integration With Heat Pipes,” Energy, 33(2), pp. 292–299. [CrossRef]
Juraščk, M. , Sues, A. , and Ptasinski, K. J. , 2010, “ Exergy Analysis of Synthetic Natural Gas Production Method From Biomass,” Energy, 35(2), pp. 880–888. [CrossRef]
Bang-Møller, C. , and Rokni, M. , 2010, “ Thermodynamic Performance Study of Biomass Gasification, Solid Oxide Fuel Cell and Micro Gas Turbine Hybrid Systems,” Energy Convers. Manage., 51(11), pp. 2330–2339. [CrossRef]
Bang-Møller, C. , Rokni, M. , and Elmegaard, B. , 2011, “ Exergy Analysis and Optimization of a Biomass Gasification, Solid Oxide Fuel Cell and Micro Gas Turbine Hybrid System,” Energy, 36(8), pp. 4740–4752. [CrossRef]
van der Meijden, C. M. , Veringa, H. J. , and Rabou, L. P. L. M. , 2010, “ The Production of Synthetic Natural Gas (SNG): A Comparison of Three Wood Gasification Systems for Energy Balance and Overall Efficiency,” Biomass Bioenergy, 34(3), pp. 302–311. [CrossRef]
Damiani, L. , and Trucco, A. , 2009, “ Biomass Gasification Modelling: An Equilibrium Model, Modified to Reproduce the Operation of Actual Reactors,” ASME Paper No. GT2009-60323.
Jarungthammachote, S. , and Dutta, A. , 2007, “ Thermodynamic Equilibrium Model and Second Law Analysis of a Downdraft Waste Gasifier,” Energy, 32(9), pp. 1660–1669. [CrossRef]
Huang, H. , and Ramaswamy, S. , 2009, “ Modeling Biomass Gasification Using Thermodynamic Equilibrium Approach,” Appl. Biochem. Biotechnol., 154(1–3), pp. 17–25.
Loha, C. , Chatterjee, P. K. , and Chattopadhyay, H. , 2011, “ Performance of Fluidized Bed Steam Gasification of Biomass—Modeling and Experiment,” Energy Convers. Manage., 52(3), pp. 1583–1588. [CrossRef]
Pröll, T. , and Hofbauer, H. , 2008, “ Development and Application of a Simulation Tool for Biomass Gasification Based Processes,” Int. J. Chem. React. Eng., 6(1), pp. 1–56.
Pröll, T. , and Hofbauer, H. , 2008, “ H2 Rich Syngas by Selective CO2 Removal From Biomass Gasification in a Dual Fluidized Bed System—Process Modelling Approach,” Fuel Process. Technol., 89(11), pp. 1207–1217. [CrossRef]
Gumz, W. , 1950, Gas Producers and Blast Furnaces, Wiley, New York.
Duret, A. , Friedli, C. , and Marchal, F. , 2005, “ Process Design of Synthetic Natural Gas (SNG) Production Using Wood Gasification,” J. Cleaner Prod., 13(15), pp. 1434–1446. [CrossRef]
Gassner, M. , and Marchal, F. , 2009, “ Thermo-Economic Process Model for Thermochemical Production of Synthetic Natural Gas (SNG) From Lignocellulosic Biomass,” Biomass Bioenergy, 33(11), pp. 1587–1604. [CrossRef]
Pröll, T. , 2004, “ Potentiale der Wirbelschichtdampfvergasung fester Biomasse - Modellierung und Simulation auf Basis der Betriebserfahrungen am Biomassekraftwerk Güssing,” Ph.D. thesis, Vienna University of Technology, Vienna, Austria.
Gröbl, T. , Walter, H. , and Haider, M. , 2011, “ Biomass Steam Gasification—Mathematical Modeling of an Innovative Pressurized Gasification Process,” Second International Conference on Heat and Mass Transfer, Chennai, India, Dec. 27–30, pp. 66–71.
Gröbl, T. , Walter, H. , Haider, M. , and Gallmetzer, G. , 2011, “ Biomass Steam Gasification—Mathematical Modeling and Analysis of the Thermo-Chemical Gasification Process,” Third International Conference on Polygeneration Strategies, pp. 261–268.
Gómez-Barea, A. , Thunman, H. , Leckner, B. , Campoy, M. , and Ollero, P. , 2007, “ Prediction of Gas Composition in Biomass Gasifiers,” Second International Congress of Energy and Environment Engineering and Management, Badajoz, Spain, June 6–8, Paper No. ER-030.
Salem, A. M. , and Paul, M. C. , 2018, “ An Integrated Kinetic Model for Downdraft Gasifier Based on a Novel Approach That Optimises the Reduction Zone of Gasifier,” Biomass Bioenergy, 109, pp. 172–181. [CrossRef]
Rao, M. S. , Singh, S. P. , Sodha, M. S. , Dubey, A. K. , and Shyam, M. , 2004, “ Stoichiometric, Mass, Energy and Exergy Balance Analysis of Countercurrent Fixed-Bed Gasification of Post-Consumer Residues,” Biomass Bioenergy, 27(2), pp. 155–171. [CrossRef]
Ratnadhariya, J. K. , and Channiwala, S. A. , 2009, “ Three Zone Equilibrium and Kinetic Free Modeling of Biomass Gasifier—A Novel Approach,” Renewable Energy, 34(4), pp. 1050–1058. [CrossRef]
Tepper, H. , 2005, “ Zur Vergasung von Rest- und Abfallholz in Wirbelschichtreaktoren für dezentrale Energieversorgungsanlagen,” Ph.D. thesis, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany.
Ngo, S. I. , Nguyen, T. D. , Lim, Y.-I. , Song, B.-H. , Lee, U.-D. , Choi, Y.-T. , and Song, J.-H. , 2011, “ Performance Evaluation for Dual Circulating Fluidized-Bed Steam Gasifier of Biomass Using Quasi-Equilibrium Three-Stage Gasification Model,” Appl. Energy, 88(12), pp. 5208–5220. [CrossRef]
Nguyen, T. D. B. , Ngo, S. I. , Lim, Y.-I. , Lee, J. W. , Lee, U.-D. , and Song, B.-H. , 2012, “ Three-Stage Steady-State Model for Biomass Gasification in a Dual Circulating Fluidized-Bed,” Energy Convers. Manage., 54(1), pp. 100–112. [CrossRef]
Sadaka, S. S. , Ghaly, A. E. , and Sabbah, M. A. , 2002, “ Two Phase Biomass Air-Steam Gasification Model for Fluidized Bed Reactors—Part I: Model Development,” Biomass Bioenergy, 22(6), pp. 439–462. [CrossRef]
Kuo, P.-C. , Wu, W. , and Chen, W.-H. , 2014, “ Gasification Performances of Raw and Torrefied Biomass in a Downdraft Fixed Bed Gasifier Using Thermodynamic Analysis,” Fuel, 117(Pt. B), pp. 1231–1241. [CrossRef]
Karl, J. , 2001, “ Vorrichtung zur Vergasung biogener Einsatzstoffe,” Technical University of Munich, Germany, Patent No. Patentschrift DE19926202 C1.
Metz, T. , 2006, “ Allotherme Vergasung von Biomasse in indirekt beheizten Wirbelschichten,” Ph.D. thesis, Technische Universität München, Munich, Germany.
Schmitz, W. , Karl, J. , and Hein, D. , 2000, “ Allothermal Fluidized Bed Gasification—Possibilities for the Implementation of the Heat Input in Fluidized Beds,” First World Conference on Biomass for Energy and Industry, Sevilla, Spain, June 5–9, pp. 1566–1569.
Karl, J. , and Hein, D. , 2002, “ Performance Characteristics of the Biomass Heatpipe Reformer,” 12th European Conference on Biomass for Energy and Climate Protection, Amsterdam, The Netherlands, June 17–21.
Karellas, S. , Karl, J. , and Kakaras, E. , 2008, “ An Innovative Biomass Gasification Process and Its Coupling With Microturbine and Fuel Cell Systems,” Energy, 33(2), pp. 284–291. [CrossRef]
Karl, J. , Gallmetzer, G. , Hochleithner, T. , Kienberger, T. , Schweiger, A. , and Kroener, M. , 2009, “ Small-Scale Generation of Substitute Natural Gas,” First International Conference on Polygeneration Strategies, Vienna, Austria, Sept. 1–4.
Gallmetzer, G. , Ackermann, P. , Schweiger, A. , Kienberger, T. , Gröbl, T. , Walter, H. , Zankl, M. , and Kröner, M. , 2011, “ The Agnion Heatpipe-Reformer—Operating Experiences and Evaluation of Fuel Conversion and Syngas Composition,” Third International Conference on Polygeneration Strategies, pp. 13–22.
Panopoulos, K. , Fryda, L. , Karl, J. , Poulou, S. , and Kakaras, E. , 2006, “ High Temperature Solid Oxide Fuel Cell Integrated With Novel Allothermal Biomass Gasification—Part II: Exergy Analysis,” J. Power Sources, 159(1), pp. 586–594. [CrossRef]
Kaltschmitt, M. , Hartman, H. , and Hofbauer, H. , 2009, Energie Aus Biomasse - Grundlagen, Techniken Und Verfahren, 2nd ed., Springer-Verlag, Berlin. [CrossRef]
Roider, J. , 2002, “ Kinetic Modeling of Biomass Gasification With Steam in a Fluidized Bed,” M.S. thesis, Vienna University of Technology, Vienna, Austria.
Di Blasi, C. , 2008, “ Modeling Chemical and Physical Processes of Wood and Biomass Pyrolysis,” Prog. Energy Combust. Sci., 34(1), pp. 47–90. [CrossRef]
Merrick, D. , 1983, “ Mathematical Models of the Thermal Decomposition of Coal—1: The Evolution of Volatile Matter,” Fuel, 62(5), pp. 534–539. [CrossRef]
Prasad, B. V. R. K. , and Kuester, J. L. , 1988, “ Process Analysis of a Dual Fluidized Bed Biomass Gasification System,” Ind. Eng. Chem. Res., 27(2), pp. 304–310. [CrossRef]
Sadaka, S. S. , Ghaly, A. E. , and Sabbah, M. A. , 2002, “ Two Phase Biomass Air-Steam Gasification Model for Fluidized Bed Reactors—Part II: Model Sensitivity,” Biomass Bioenergy, 22(6), pp. 463–477. [CrossRef]
Sadaka, S. S. , Ghaly, A. E. , and Sabbah, M. A. , 2002, “ Two-Phase Biomass Air-Steam Gasification Model for Fluidized Bed Reactors—Part III: Model Validation,” Biomass Bioenergy, 22(6), pp. 479–487. [CrossRef]
Higman, C. , and van der Burgt, M. , 2003, Gasification, Elsevier Science, Amsterdam, The Netherlands.
Barrio, M. , 2002, “ Experimental Investigation of Small-Scale Gasification of Woody Biomass,” Ph.D. thesis, The Norwegian University of Science and Technology, Trondheim, Norway.
Pröll, T. , Rauch, R. , Aichernig, C. , and Hofbauer, H. , 2007, “ Fluidized Bed Steam Gasification of Solid Biomass—Performance Characteristics of an 8 MWth Combined Heat and Power Plant,” Int. J. Chem. Reactor Eng., 5(1), p. A54. [CrossRef]
Kaushal, P. , Abedi, J. , and Mahinpey, N. , 2010, “ A Comprehensive Mathematical Model for Biomass Gasification in a Bubbling Fluidized Bed Reactor,” Fuel, 89(12), pp. 3650–3661. [CrossRef]
Kee, R. J. , Rupley, F. M. , Meeks, E. , and Miller, J. A. , 1996, “ CHEMKIN-III: A FORTRAN Chemical Kinetics Package for the Analysis of Gas-phase Chemical and Plasma Kinetics,” Sandia National Laboratories, Livermore, CA, Report No. SAND96-8216.
Kienberger, T. , 2010, “ Methanierung biogener Synthesegase mit Hinblick auf die direkte Umsetzung von hoeheren Kohlenwasserstoffen,” Ph.D. thesis, Graz University of Technology, Graz, Austria.
Gallmetzer, G. , Ackermann, P. , Schweiger, A. , Kienberger, T. , Gröbl, T. , Walter, H. , Zankl, M. , and Kröner, M. , 2012, “ The Agnion Heatpipe-Reformer—Operating Experiences and Evaluation of Fuel Conversion and Syngas Composition,” Biomass Convers. Biorefin., 2(3), pp. 207–215. [CrossRef]
van den Berg, C. , 2010, Personal correspondence (unpublished), agnion.
Bolhàr-Nordenkampf, M. , Rauch, R. , Bosch, K. , Aichernig, C. , and Hofbauer, H. , 2003, “ Biomass CHP Plant Güssing - Using Gasification for Power Generation,” Second Regional Conference on Energy Technology Towards a Clean Envionnment, Conference (RCETCE), Phuket, Thailand, Feb. 12–14, pp. 567–572.

Figures

Grahic Jump Location
Fig. 1

Scheme of the HPR, according to Ref. [51]

Grahic Jump Location
Fig. 2

Design of the HPR [54]

Grahic Jump Location
Fig. 3

Scheme of the HPR model

Grahic Jump Location
Fig. 4

Inherent structure of the basic reformer model

Grahic Jump Location
Fig. 5

Reformer mass balance

Grahic Jump Location
Fig. 6

Reformer energy balance

Grahic Jump Location
Fig. 7

Combustor mass and energy balance

Grahic Jump Location
Fig. 8

Inherent model structure of the advanced (kinetically modified) reformer model

Grahic Jump Location
Fig. 9

Detailed mass balance of the advanced (kinetically modified) reformer model

Grahic Jump Location
Fig. 10

Pyrolysis and syngas composition at design operation

Grahic Jump Location
Fig. 11

Fixed carbon conversion as a function of gasification temperature and mean residence time considering forward reaction only (calculated with kinetic model)

Grahic Jump Location
Fig. 12

Composition of residue char as a function of gasification temperature and mean residence time considering forward reaction only (calculated with kinetic model)

Grahic Jump Location
Fig. 13

Fixed carbon conversion as a function of gasification temperature and mean residence time considering forward and backward reaction (calculated with kinetic model)

Grahic Jump Location
Fig. 14

Composition of residue char as a function of gasification temperature and mean residence time considering forward and backward reaction (calculated with kinetic model)

Grahic Jump Location
Fig. 15

Influence of pressure on fixed char conversion (calculated with kinetic model)

Grahic Jump Location
Fig. 16

Comparison of fixed carbon conversion calculated with the reversible and the irreversible kinetic approach

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In