0
Research Papers: Fuel Combustion

Multidimensional Numerical Simulations of Knocking Combustion in a Cooperative Fuel Research Engine

[+] Author and Article Information
Pinaki Pal

Energy Systems Division,
Argonne National Laboratory,
9700 S Cass Avenue,
Lemont, IL 60439
e-mail: pal@anl.gov

Yunchao Wu

Department of Mechanical Engineering,
University of Connecticut,
Storrs, CT 06269
e-mail: yunchao.wu@uconn.edu

Tianfeng Lu

Department of Mechanical Engineering,
University of Connecticut,
Storrs, CT 06269
e-mail: tianfeng.lu@uconn.edu

Sibendu Som

Energy Systems Division,
Argonne National Laboratory,
9700 S Cass Avenue,
Lemont, IL 60439
e-mail: ssom@anl.gov

Yee Chee See

Convergent Science Inc.,
6400 Enterprise Lane,
Madison, WI 53719
e-mail: yeechee.see@convergecfd.com

Alexandra Le Moine

Convergent Science Inc.,
6400 Enterprise Lane,
Madison, WI 53719
e-mail: alexandraloiero@gmail.com

1Corresponding author.

Contributed by the Internal Combustion Engine Division of ASME for publication in the JOURNAL OF ENERGY RESOURCES TECHNOLOGY. Manuscript received February 20, 2018; final manuscript received March 6, 2018; published online May 15, 2018. Editor: Hameed Metghalchi.

J. Energy Resour. Technol 140(10), 102205 (May 15, 2018) (8 pages) Paper No: JERT-18-1149; doi: 10.1115/1.4040063 History: Received February 20, 2018; Revised March 06, 2018

A numerical approach was developed based on multidimensional computational fluid dynamics (CFD) to predict knocking combustion in a cooperative fuel research (CFR) engine. G-equation model was employed to track the turbulent flame front and a multizone model was used to capture auto-ignition in the end-gas. Furthermore, a novel methodology was developed wherein a lookup table generated from a chemical kinetic mechanism could be employed to provide laminar flame speed as an input to the G-equation model, instead of using empirical correlations. To account for fuel chemistry effects accurately and lower the computational cost, a compact 121-species primary reference fuel (PRF) skeletal mechanism was developed from a detailed gasoline surrogate mechanism using the directed relation graph (DRG) assisted sensitivity analysis (DRGASA) reduction technique. Extensive validation of the skeletal mechanism was performed against experimental data available from the literature on both homogeneous ignition delay and laminar flame speed. The skeletal mechanism was used to generate lookup tables for laminar flame speed as a function of pressure, temperature, and equivalence ratio. The numerical model incorporating the skeletal mechanism was employed to perform simulations under research octane number (RON) and motor octane number (MON) conditions for two different PRFs. Parametric tests were conducted at different compression ratios (CR) and the predicted values of critical CR, delineating the boundary between “no knock” and “knock,” were found to be in good agreement with available experimental data. The virtual CFR engine model was, therefore, demonstrated to be capable of adequately capturing the sensitivity of knock propensity to fuel chemistry.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Singh, E. , Badra, J. , Mehl, M. , and Sarathy, S. M. , 2017, “ Chemical Kinetic Insights Into the Octane Number and Octane Sensitivity of Gasoline Surrogate Mixtures,” Energy Fuels, 31(2), pp. 1945–1960. [CrossRef]
Kalghatgi, G. T. , 2014, “ Outlook for Fuels in Internal Combustion Engines,” Int. J. Engine Res, 15(4), pp. 383–398. [CrossRef]
Spicher, U. , Kroger, H. , and Ganser, J. , 1991, “ Detection of Knocking Combustion Using Simultaneously High-Speed Schlieren Cinematography and Multi Optical Fiber Technique,” SAE Paper No. 912312.
Heywood, J. B. , 1988, Internal Combustion Engine Fundamentals, McGraw-Hill, New York.
Lovell, W. G. , 1948, “ Knocking Characteristics of Hydrocarbons,” Ind. Eng. Chem., 40(12), pp. 2388–2438. [CrossRef]
ASTM International, 2012, “ Standard Test Method for Research Octane Number of Spark-Ignition Engine Fuel,” ASTM International, West Conshohocken, PA, Standard No. ASTM D2699-12. https://www.astm.org/DATABASE.CART/HISTORICAL/D2699-12.htm
ASTM International, 2016, “ Standard Test Method for Motor Octane Number of Spark-Ignition Engine Fuel,” ASTM International, West Conshohocken, PA, Standard No. ASTM D2700-16. https://www.astm.org/DATABASE.CART/HISTORICAL/D2700-12.htm
Leppart, W. , 1990, “ The Chemical Origin of Fuel Octane Sensitivity,” SAE Paper No. 902137.
Westbrook, C. K. , Mehl, M. , Pitz, W. J. , and Sjoberg, M. , 2017, “ Chemical Kinetics of Octane Sensitivity in a Spark-Ignition Engine,” Combust. Flame, 175, pp. 2–15. [CrossRef]
Sluder, C. S. , Szybist, J. P. , McCormick, R. L. , Ratcliff, M. A. , and Zigler, B. T. , 2016, “ Exploring the Relationship Between Octane Sensitivity and Heat-of-Vaporization,” SAE Int. J. Fuels Lubr., 9(1), pp. 80–90.
Kalghatgi, G. T. , 2015, “ Developments in Internal Combustion Engines and Implications for Combustion Science and Future Transport Fuels,” Proc. Combust. Inst., 35(1), pp. 101–115. [CrossRef]
Kalghatgi, G. T. , 2013, Fuel/Engine Interactions, SAE International, Warrendale, PA.
Kalghatgi, G. T. , 2005, “ Auto-Ignition Quality of Practical Fuels and Implications for Fuel Requirements of Future SI and HCCI Engines,” SAE Paper No. 2005-01-0239.
Kalghatgi, G. T. , 2001, “ Fuel Anti-Knock Quality—Part I: Engine Studies,” SAE Paper No. 2001-01-3584.
Kalghatgi, G. T. , 2001, “ Fuel Anti-Knock Quality—Part II: Vehicle Studies—How Relevant is Motor Octane Number (MON) for Modern Engines?,” SAE Paper No. 2001-01-3585.
Zhang, B. , and Sarathy, S. M. , 2016, “ Lifecycle Optimized Ethanol-Gasoline Blends for Turbocharged Engines,” Appl. Energy, 181, pp. 38–53. [CrossRef]
Boot, M. D. , Tian, M. , Hensen, E. J. M. , and Sarathy, S. M. , 2017, “ Impact of Fuel Molecular Structure on Auto-Ignition Behavior—Design Rules for Future High Performance Gasolines,” Prog. Energy Combust. Sci., 60, pp. 1–25. [CrossRef]
Peters, N. , 2000, Turbulent Combustion, Cambridge University Press, Cambridge, UK.
Tan, Z. , and Reitz, R. D. , 2003, “ Modeling Ignition and Combustion in Spark-Ignition Engines Using a Level Set Method,” SAE Paper No. 2003-01-0722.
Som, S. , Longman, D. E. , Luo, Z. , Plomer, M. , and Lu, T. , 2011, “ Three Dimensional Simulations of Diesel Sprays Using n-Dodecane as a Surrogate,” Fall Technical Meeting of the Eastern States Section of the Combustion Institute, Storrs, CT, Oct. 9–12, pp. 1–14. https://www.anl.gov/energy-systems/publication/three-dimensional-simulations-diesel-sprays-using-n-dodecane-surrogate-0
Liang, L. , and Reitz, R. D. , 2006, “ Spark Ignition Engine Combustion Modeling Using a Level Set Method With Detailed Chemistry,” SAE Paper No. 2006-01-0243.
Liang, L. , Reitz, R. D. , Iyer, C. O. , and Yi, J. , 2007, “ Modeling Knock in Spark-Ignition Engines Using a G-Equation Combustion Model Incorporating Detailed Chemical Kinetics,” SAE Paper No. 2007-01-0165.
Pan, J. , Wei, H. , Shu, G. , Pan, M. , Feng, D. , and Li, N. , 2017, “ LES Analysis of Auto-Ignition Induced Abnormal Combustion Based on a Downsized SI Engine,” Appl. Energy, 191, pp. 183–192. [CrossRef]
Ali, M. J. M. , Perez, F. H. , Vedharaj, S. , Vallinayagam, R. , Dibble, R. , and Im, H. , 2017, “ Effect of Timing and Location of Hotspot on Super Knock During Pre-Ignition,” SAE Paper No. 2017-01-0686.
Metghalchi, M. , and Keck, J. C. , 1982, “ Burning Velocities of Mixtures of Air and Methanol, Isooctane and Indolene at High Pressures and Temperatures,” Combust. Flame, 48, pp. 191–210. [CrossRef]
Gulder, O. L. , 1984, “ Correlations of Laminar Combustion Data for Alternative S.I. Engine Fuels,” SAE Paper No. 841000.
Babajimopoulos, A. , Assanis, D. N. , Flowers, D. L. , Aceves, S. M. , and Hessel, R. P. , 2005, “ A Fully Coupled Computational Fluid Dynamics and Multi-Zone Model With Detailed Chemical Kinetics for the Simulation of Premixed Charge Compression Ignition Engines,” Int. J. Engine Res., 6(5), pp. 497–512. [CrossRef]
Mehl, M. , Faravelli, T. , Giavazzi, F. , Ranzi, E. , Scorletti, P. , Tardani, A. , and Tarna, D. , 2006, “ Detailed Chemistry Promotes Understanding of Octane Numbers and Gasoline Sensitivity,” Energy Fuels, 20(6), pp. 2391–2398. [CrossRef]
Yates, A. D. B. , Swarts, A. , and Vilijoen, C. L. , 2005, “ Correlating Auto-Ignition Delays and Knock-Limited Spark-Advance Data for Different Types of Fuel,” SAE Paper No. 2005-01-2083.
Convergent Science, 2016, CONVERGE 2.3 Theory Manual, Convergent Science, Middleton, WI.
Imming, H. S. , 1944, “ The Effect of Piston-Head Temperature on Knock-Limited Power,” Glenn Research Center, Cleveland, OH, Technical Report No. NACA-WR-E-35. https://ntrs.nasa.gov/search.jsp?R=20050019668
Wittmann, N. O. , 1946, “ Piston Temperature Measurement and Piston Design Investigation on a CFR Engine,” Ph.D. dissertation, Massachusetts Institute of Technology, Cambridge, MA. https://calhoun.nps.edu/bitstream/handle/10945/6510/pistontemperatur00witt.pdf;sequence=3
Marr, M. A. , Wallace, J. S. , Chandra, S. , Pershin, L. , and Mostaghimi, J. , 2010, “ A Fast Response Thermocouple for Internal Combustion Engine Surface Temperature Measurements,” Exp. Therm. Fluid Sci., 34(2), pp. 183–189. [CrossRef]
Demuynck, J. , Raes, N. , Zuliani, M. , Peaepe, M. D. , Sierens, R. , and Verhelst, S. , 2009, “ Local Heat Flux Measurements in a Hydrogen and Methane Spark Ignition Engine With a Thermopile Sensor,” Int. J. Hydrogen Energy, 34(24), pp. 9857–9868. [CrossRef]
Nishiwaki, K. , 1998, “ Modeline Engine Heat Transfer and Flame-Wall Interaction,” Fourth International Symposium COMODIA, Kyoto, Japan, July 20–23, pp. 35–44.
Lyford-Pike, E. J. , and Heywood, J. B. , 1984, “ Thermal Boundary Layer Thickness in the Cylinder of a Spark-Ignition Engine,” Int. J. Heat Mass Transfer, 27(10), pp. 1873–1878. [CrossRef]
Deslandes, G. , 1975, “ The Motored Engine Autoignition of Hydrogen and Methane,” Ph.D. thesis, The University of Melbourne, Melbourne, Australia.
Givler, S. , Raju, M. , Pomraning, E. , Senecal, P. , Salman, N. , and Reese, R. , 2013, “ Gasoline Combustion Modeling of Direct and Port-Fuel Injected Engines Using a Reduced Chemical Mechanism,” SAE Paper No. 2013-01-1098.
Pomraning, E. , Richards, K. , and Senecal, P. , 2014, “ Modeling Turbulent Combustion Using a RANS Model, Detailed Chemistry, and Adaptive Mesh Refinement,” SAE Paper No. 2014-01-1116.
Scarcelli, R. , Richards, K. , Pomraning, E. , Senecal, P. K. , Wallner, T. , and Sevik, J. , 2016, “ Cycle-to-Cycle Variations in Multi-Cycle Engine RANS Simulations,” SAE Paper No. 2016-01-0593.
Robert, A. , Richard, S. , Colin, O. , Martinez, L. , and Francqueville, L. D. , 2015, “ LES Prediction and Analysis of Knocking Combustion in a Spark Ignition Engine,” Proc. Combust. Inst., 35(3), pp. 2941–2948. [CrossRef]
Robert, A. , Richard, S. , Colin, O. , and Poinsot, T. , 2015, “ LES Study of Deflagration to Detonation Mechanisms in a Downsized Spark Ignition Engine,” Combust. Flame, 162(7), pp. 2788–2807. [CrossRef]
Han, Z. , and Reitz, R. D. , 1995, “ Turbulence Modeling of Internal Combustion Engines Using RNG k-ε Models,” Combust. Sci. Technol., 106(4–6), pp. 267–295. [CrossRef]
Han, Z. , and Reitz, R. D. , 1997, “ A Temperature Wall Function Formulation for Variable Density Turbulence Flow With Application to Engine Convective Heat Transfer Modeling,” Int. J. Heat Mass Transfer, 40(3), pp. 613–625. [CrossRef]
Ewald, J. , and Peters, N. , 2005, “ A Level Set Based Flamelet Model for the Prediction of Combustion in Spark Ignition Engines,” 15th International Multidimensional Engineering Models User Group, Detroit, MI, Apr. 11, pp. 1–6. https://www.erc.wisc.edu/documents/6-Aachen-Int3DEngine2005_EwaldPeters.pdf
Senecal, P. , Pomraning, E. , Richards, K. , Briggs, T. , Choi, C. Y. , McDavid, R. M. , and Patterson, M. A. , 2003, “ Multi-Dimensional Modeling of Direct-Injection Diesel Spray Liquid Length and Flame Lift-Off Length Using CFD and Parallel Detailed Chemistry,” SAE Paper No. 2003-01-1043.
Pal, P. , Keum, S. , and Im, H. G. , 2016, “ Assessment of Flamelet Versus Multi-Zone Combustion Modeling Approaches for Stratified-Charge Compression Ignition Engines,” Int. J. Engine Res., 17(3), pp. 280–290. [CrossRef]
Pal, P. , 2016, “ Computational Modeling and Analysis of Low Temperature Combustion Regimes for Advanced Engine Applications,” Ph.D. dissertation, University of Michigan-Ann Arbor, Ann Arbor, MI. https://deepblue.lib.umich.edu/handle/2027.42/120735
Keum, S. , Pal, P. , Im, H. G. , Babajimopoulos, A. , and Assanis, D. N. , 2016, “ Effects of Fuel Injection Parameters on the Performance of Homogeneous Charge Compression Ignition at Low-Load Conditions,” Int. J. Engine Res., 17(4), pp. 413–420. [CrossRef]
Pal, P. , Probst, D. , Pei, Y. , Zhang, Y. , Traver, M. , Cleary, D. , and Som, S. , 2017, “ Numerical Investigation of a Gasoline-Like Fuel in a Heavy-Duty Compression Ignition Engine Using Global Sensitivity Analysis,” SAE Int. J. Fuels Lubr., 10(1), pp. 56–68.
Kodavasal, J. , Kolodziej, C. K. , Ciatti, S. A. , and Som, S. , 2015, “ Computational Fluid Dynamics Simulation of Gasoline Compression Ignition,” ASME J. Energy Resour. Technol., 137(3), p. 032212. [CrossRef]
Pei, Y. , Hu, B. , and Som, S. , 2016, “ Large-Eddy Simulation of an n-Dodecane Spray Flame Under Different Ambient Oxygen Conditions,” ASME J. Energy Resour. Technol., 138(3), p. 032205. [CrossRef]
Som, S. , Longman, D. E. , Luo, Z. , Plomer, M. , Lu, T. , Senecal, P. K. , and Pomraning, E. , 2012, “ Simulating Flame Lift-Off Characteristics of Diesel and Biofuel Fuels Using Detailed Chemical-Kinetic Mechanisms and Large Eddy Simulation Turbulence Model,” ASME J. Energy Resour. Technol., 134(3), p. 032204. [CrossRef]
Wu, Y. , Pal, P. , Som, S. , and Lu, T. , 2017, “ A Skeletal Chemical Kinetic Mechanism for Gasoline and Gasoline/Ethanol Blend Surrogates for Engine CFD Applications,” International Conference on Chemical Kinetics, Chicago, IL, May 21–25, Paper No. CFD008.
Mehl, M. , Pitz, W. J. , Westbrook, C. K. , and Curran, H. J. , 2011, “ Kinetic Modeling of Gasoline Surrogate Components and Mixtures Under Engine Conditions,” Proc. Combust. Inst., 33(1), pp. 193–200. [CrossRef]
Lu, T. , and Law, C. K. , 2005, “ A Directed Relation Graph Method for Mechanism Reduction,” Proc. Combust. Inst., 30(1), pp. 1333–1341. [CrossRef]
Lu, T. , and Law, C. K. , 2006, “ Linear Time Reduction of Large Kinetic Mechanisms With Directed Relation Graph: N-Heptane and Iso-Octane,” Combust. Flame, 144(1–2), pp. 24–36. [CrossRef]
Luo, Z. , Lu, T. , Maciaszek, M. J. , Som, S. , and Longman, D. E. , 2010, “ A Reduced Mechanism for High-Temperature Oxidation of Biodiesel Surrogates,” Energy Fuels, 24(12), pp. 6283–6293. [CrossRef]
Zheng, X. L. , Lu, T. , and Law, C. K. , 2007, “ Experimental Counterflow Ignition Temperatures and Reaction Mechanisms of 1,3-Butadiene,” Proc. Combust. Inst., 31(1), pp. 367–375. [CrossRef]
Lu, T. , and Law, C. K. , 2008, “ Strategies for Mechanism Reduction for Large Hydrocarbons: N -Heptane,” Combust. Flame, 154(1), pp. 153–163. [CrossRef]
Fieweger, K. , Blumenthal, R. , and Adomeit, G. , 1997, “ Self-Ignition of S.I. Engine Model Fuels: A Shock Tube Investigation at High Pressure,” Combust. Flame, 109(4), pp. 599–619. [CrossRef]
Davis, S. G. , and Law, C. K. , 1998, “ Determination of Fuel Structure Effects on Laminar Flame Speeds of C1 to C8 Hydrocarbons,” Combust. Sci. Technol., 140(1), pp. 427–449. [CrossRef]
Kwon, O. C. , Hassan, M. I. , and Faeth, G. M. , 2000, “ Flame/Stretch Interactions of Premixed Fuel-Vapor/O/N Flames,” J. Propul. Power, 16(3), pp. 513–522. [CrossRef]
Huang, Y. , Sung, C. J. , and Eng, J. A. , 2004, “ Laminar Flame Speeds of Primary Reference Fuels and Reformer Gas Mixtures,” Combust. Flame, 139(3), pp. 239–251. [CrossRef]
Kwon, K. , Freeh, J. E. , Sung, C. J. , and Huang, Y. , 2007, “ Laminar Flame Speeds of Preheated Iso-Octane/O2/N2 and n-Heptane/O2/N2 Mixtures,” J. Propul. Power, 23(2), pp. 428–436. [CrossRef]
Van Lipzig, J. P. J. , Nilsson, E. J. K. , de Goey, L. P. H. , and Konnov, A. A. , 2011, “ Laminar Burning Velocities of n-Heptane, Iso-Octane, Ethanol and Their Binary and Tertiary Mixtures,” Fuel, 90(4), pp. 2773–2781. [CrossRef]
Dirrenberger, P. , Glaude, P. A. , Bounaceur, R. , Le Gall, H. , da Cruz, A. P. , Konnov, A. A. , and Battin-Leclerc, F. , 2014, “ Laminar Burning Velocities of n-Heptane, Iso-Octane, Ethanol and Their Binary and Tertiary Mixtures,” Fuel, 115, pp. 162–169. [CrossRef]
Kalghatgi, G. , Algunaibet, I. , and Morganti, K. , 2017, “ On Knock Intensity and Superknock in SI Engines,” SAE Int. J. Engines, 10(3), pp. 1051–1063.
Breda, S. , D'Adamo, A. , Fontanesi, S. , Giovannoni, N. , Tests, F. , Irimescu, A. , Merola, S. , Tornatore, C. , and Valentino, G. , 2016, “ CFD Analysis of Combustion and Knock in an Optically Accessible GDI Engine,” SAE Int. J. Engines, 9(1), pp. 641–656.
Kalghatgi, G. T. , Golombok, M. , and Snowdon, P. , 1995, “ Fuel Effects on Knock, Heat Release and ‘CARS’ Temperatures in a Spark Ignition Engine,” Combust. Sci. Technol., 110–111(1), pp. 209–228. [CrossRef]
Brecq, G. , Bellettre, J. , and Tazerout, M. , 2003, “ A New Indicator for Knock Detection in Gas SI Engines,” Int. J. Therm. Sci., 42(5), pp. 523–532. [CrossRef]
Brecq, G. L. , and Corre, O. , 2005, “ Modeling of In-Cylinder Pressure Oscillations Under Knocking Conditions: Introduction to Pressure Envelope Curve,” SAE Paper No. 2005-01-1126.
Pal, P. , Kolodziej, C. , Choi, S. , Som, S. , Broatch, A. , Soriano, J. G. , Wu, Y. , Lu, T. , and See, Y. C. , 2018, “ Development of a Virtual CFR Engine Model for Knocking Combustion Analysis,” SAE Paper No. 2018-01-0187.
Im, H. G. , Pal, P. , Wooldridge, M. S. , and Mansfield, A. B. , 2015, “ A Regime Diagram for Autoignition of Homogeneous Reactant Mixtures With Turbulent Velocity and Temperature Fluctuations,” Combust. Sci. Technol., 187(8), pp. 1263–1275. [CrossRef]
Pal, P. , Valorani, M. , Arias, P. G. , Im, H. G. , Wooldridge, M. S. , Ciottoli, P. P. , and Galassi, R. M. , 2017, “ Computational Characterization of Ignition Regimes in a Syngas/Air Mixture With Temperature Fluctuations,” Proc. Combust. Inst., 36(3), pp. 3705–3716. [CrossRef]
Pal, P. , Mansfield, A. B. , Arias, P. G. , Wooldridge, M. S. , and Im, H. G. , 2015, “ A Computational Study of Syngas Auto-Ignition Characteristics at High-Pressure and Low-Temperature Conditions With Thermal Inhomogeneities,” Combust. Theory Modell., 19(5), pp. 587–601. [CrossRef]
Pal, P. , Mansfield, A. B. , Wooldridge, M. S. , and Im, H. G. , 2015, “ Characteristics of Syngas Auto-Ignition at High Pressure and Low Temperature Conditions With Thermal Inhomogeneities,” Energy Procedia, 66, pp. 1–4. [CrossRef]
Pal, P. , Valorani, M. , Im, H. G. , and Wooldridge, M. S. , 2015, “ Prediction of Strong and Weak Ignition Regimes in Turbulent Reacting Flows With Temperature Fluctuations: A Direct Numerical Study,” 68th Annual Meeting of APS Division of Fluid Dynamics, Boston, MA, Nov. 22–24. https://meetings.aps.org/Meeting/DFD15/Session/G40.5
Pal, P. , Im, H. G. , Wooldridge, M. S. , and Mansfield, A. B. , 2015, “ Effects of Turbulence and Temperature Fluctuations on Syngas Auto-Ignition,” Seventh European Combustion Meeting, Budapest, Hungary, Mar. 30–Apr. 2, Paper No. P2-35 http://www.ecm2015.hu/papers/P2-35.pdf.
Pal, P. , Im, H. G. , Wooldridge, M. S. , and Mansfield, A. B. , 2015, “ Auto-Ignition Phenomena in Thermally Inhomogeneous Turbulent Reacting Flows; Numerical Validation of a Regime Diagram,” Tenth Asia-Pacific Conference on Combustion, Beijing, China, July 19–22, Paper No. 119 https://experts.umich.edu/en/publications/auto-ignition-phenomena-in-thermally-inhomogeneous-turbulent-reac.

Figures

Grahic Jump Location
Fig. 2

Geometry of the CFR engine

Grahic Jump Location
Fig. 1

Critical CR versus PRF octane number from experiments (solid lines) under (a) RON and (b) MON conditions [28]. The symbols denote the CRs simulated in the present work.

Grahic Jump Location
Fig. 11

Local in-cylinder pressures for PRF80/air mixture (Ф = 1) at different CRs under RON condition

Grahic Jump Location
Fig. 12

Pressure oscillations at different CRs under RON condition for PRF80/air mixture (Ф = 1)

Grahic Jump Location
Fig. 9

Pressure oscillations at different CRs under RON condition for PRF60/air mixture (Ф = 1)

Grahic Jump Location
Fig. 10

Temporal evolutions of in-cylinder temperature and CH2O on a vertical cut plane (passing through the spark plug) for PRF60/air mixture (Ф = 1) and CR = 5.65 under RON condition

Grahic Jump Location
Fig. 3

Ignition delay time of PRF60/air mixture (Ф = 1) versus temperature at 40 atm. Symbols denote the experimental data [61] and solid lines show the numerical results (detailed: Ref.[55], reduced: present work).

Grahic Jump Location
Fig. 4

Ignition delay time of PRF80/air mixture (Ф = 1) versus temperature at 40 atm. Symbols denote the experimental data [61] and solid lines show the numerical results (detailed: Ref.[55], reduced: present work).

Grahic Jump Location
Fig. 5

Ignition delay time of PRF90/air mixture (Ф = 1) versus temperature at 40 atm. Symbols denote the experimental data [61] and solid lines show the numerical results (detailed: Ref.[55], reduced: present work).

Grahic Jump Location
Fig. 6

Laminar flame speed of iso-octane/air mixture versus equivalence ratio at 298 K and 1 atm. Symbols denote the experimental data [6267]. Solid lines show the numerical results (detailed: Ref. [55], reduced: present work).

Grahic Jump Location
Fig. 7

Laminar flame speed of PRF90/air mixture versus equivalence ratio at 298 K and 1 atm. Symbols denote the experimental data [64]. Solid lines show the numerical results (detailed: Ref. [55], reduced: present work).

Grahic Jump Location
Fig. 8

Local in-cylinder pressures for PRF60/air mixture (Ф = 1) at different CRs under RON condition

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In