Review Article

Review of Experimental and Computational Studies on Spray, Combustion, Performance, and Emission Characteristics of Biodiesel Fueled Engines

[+] Author and Article Information
Avinash Kumar Agarwal

Engine Research Laboratory,
Department of Mechanical Engineering,
Indian Institute of Technology Kanpur,
Kanpur 208016, India
e-mail: akag@iitk.ac.in

Sungwook Park, Chang Sik Lee

School of Mechanical Engineering,
Hanyang University,
222, Wangsimni-ro, Seongdong-gu,
Seoul 04763, South Korea

Atul Dhar

School of Engineering,
Indian Institute of Technology Mandi,
Mandi 175005, India

Suhan Park

School of Mechanical Engineering,
Chonnam National University,
77 Yongbong-ro, Buk-gu,
Gwangju 61186, South Korea

Tarun Gupta, Neeraj K. Gupta

Department of Civil Engineering,
Indian Institute of Technology Kanpur,
Kanpur 208016, India

1Corresponding author.

Contributed by the Internal Combustion Engine Division of ASME for publication in the JOURNAL OF ENERGY RESOURCES TECHNOLOGY. Manuscript received April 8, 2018; final manuscript received June 9, 2018; published online August 30, 2018. Editor: Hameed Metghalchi.

J. Energy Resour. Technol 140(12), 120801 (Aug 30, 2018) (30 pages) Paper No: JERT-18-1257; doi: 10.1115/1.4040584 History: Received April 08, 2018; Revised June 09, 2018

Biodiesel has emerged as a suitable alternative to mineral diesel in compression ignition (CI) engines in order to ensure global energy security and to reduce engine out emissions in near future. Biodiesel derived from various feedstocks available worldwide fits well in the current fuel supply arrangement for transport sector. However, biodiesel as an alternative transportation fuel has been extensively investigated because of differences in its important fuel properties compared with baseline mineral diesel. Since fuel properties greatly influence spray development, combustion, and emission formation in internal combustion (IC) engines, a number of experimental and computational studies on biodiesel usage in CI engines have been performed to determine its brake thermal efficiency (BTE), gaseous emissions, durability, etc., by various researchers using variety of engines and feedstocks. In the present paper, a critical review of the effect of biodiesel's fuel properties on engine performance, emissions, and combustion characteristics in existing diesel engines vis-a-vis conventional diesel has been undertaken. In addition, the progress and advances of numerical modeling involving biodiesel are also reviewed to determine the effect of fuel properties on spray evolution and development of reaction mechanisms for biodiesel combustion simulations. Fuel properties are discussed in two categories: physical and chemical properties, which are key parameters affecting spray and combustion processes. Subsequent sections review spray, combustion, emissions, and performance characteristics of biodiesels under various engine operation conditions. In the last section of this review paper, numerical modeling of biodiesel covering recent numerical models and schemes to understand the behavior of biodiesel combustion and pollutants formation is included. This review paper comprehensively summarizes biodiesel fuel's (BDFs) spray, combustion, and emission characteristics using experimental and numerical approaches. Limitations and scope for future studies are discussed in each section.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Guo, Z. , Guo, H. , and Zeng, Q. , 2018, “Investigation on Di-(2-Methoxypropyl) Carbonate Used as a Clean Oxygenated Fuel for Diesel Engine,” ASME J. Energy Resour. Technol., 140(1), p. 012201. [CrossRef]
Patil, V. V. , and Patil, R. S. , 2018, “Investigations on Partial Addition of n-Butanol in Sunflower Oil Methyl Ester Powered Diesel Engine,” ASME J. Energy Resour. Technol., 140(1), p. 012205. [CrossRef]
Mitchell, R. H. , and Olsen, D. B. , 2018, “Extending Substitution Limits of a Diesel–Natural Gas Dual Fuel Engine,” ASME J. Energy Resour. Technol., 140(5), p. 052202. [CrossRef]
Yadav, J. , and Ramesh, A. , 2018, “Comparison of Single and Multiple Injection Strategies in a Butanol Diesel Dual Fuel Engine,” ASME J. Energy Resour. Technol., 140(7), p. 072206. [CrossRef]
Buliński, Z. , Szczygieł, I. , Kabaj, A. , Krysiński, T. , Gładysz, P. , Czarnowska, L. , and Stanek, W. , 2018, “Performance Analysis of the Small-Scale α-Type Stirling Engine Using Computational Fluid Dynamics Tools,” ASME J. Energy Resour. Technol., 140(3), p. 032001. [CrossRef]
Virsik, R. , Rinderknecht, F. , and Friedrich, H. E. , 2018, “Free-Piston Linear Generator and the Development of a Solid Lubrication System,” ASME J. Energy Resour. Technol., 140(3), p. 032007. [CrossRef]
Abo-Elfadl, S. , and Mohamed, A. A. E. S. , 2018, “The Effect of the Helical Inlet Port Design and the Shrouded Inlet Valve Condition on Swirl Generation in Diesel Engine,” ASME J. Energy Resour. Technol., 140(3), p. 032203. [CrossRef]
Redtenbacher, C. , Kiesling, C. , Malin, M. , Wimmer, A. , Pastor, J. V. , and Pinotti, M. , 2017, “Potential and Limitations of Dual Fuel Operation of High Speed Large Engines,” ASME J. Energy Resour. Technol., 140(3), p. 032205. [CrossRef]
Carlanescu, R. , Prisecaru, T. , Prisecaru, M. , and Soriga, I. , 2018, “Swirl Injector for Premixed Combustion of Hydrogen–Methane Mixtures,” ASME J. Energy Resour. Technol., 140(7), p. 072002. [CrossRef]
Singh, A. P. , Bajpai, N. , and Agarwal, A. K. , 2018, “Combustion Mode Switching Characteristics of a Medium-Duty Engine Operated in Compression Ignition/PCCI Combustion Modes,” ASME J. Energy Resour. Technol., 140(9), p. 092201. [CrossRef]
ASTM, 2012, “Standard Specification for Diesel Fuel Oils,” American Society for Testing and Materials, West Conshohocken, PA, Standard No. ASTM D975-12a.
ASTM, 2012, “Standard Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate Fuels,” American Society for Testing and Materials, West Conshohocken, PA, Standard No. ASTM D6751-15b.
Tat, M. E. , Van Gerpen, J. H. , Soylu, S. , Canakci, M. , Monyem, A. , and Wormley, S. , 2000, “The Speed of Sound and Isentropic Bulk Modulus of Biodiesel at 21 °C from Atmospheric Pressure to 35 MPa,” J. Am. Oil Chem. Soc., 77(3), pp. 285–289. [CrossRef]
Martínez, G. , Sánchez, N. , Encinar, J. M. , and González, J. F. , 2014, “Fuel Properties of Biodiesel From Vegetable Oils and Oil Mixtures. Influence of Methyl Esters Distribution,” Biomass Bioenergy, 63, pp. 22–32. [CrossRef]
Giakoumis, E. G. , 2013, “A Statistical Investigation of Biodiesel Physical and Chemical Properties, and Their Correlation With the Degree of Unsaturation,” Renewable Energy, 50, pp. 858–878. [CrossRef]
Meher, L. C. , Kulkarni, M. G. , Dalai, A. K. , and Naik, S. N. , 2006, “Transesterification of Karanja (Pongamia Pinnata) Oil by Solid Basic Catalysts,” Eur. J. Lipid Sci. Technol., 108(5), pp. 389–397. [CrossRef]
Kumar, M. S. , Ramesh, A. , and Nagalingam, B. , 2003, “An Experimental Comparison of Methods to Use Methanol and Jatropha Oil in a Compression Ignition Engine,” Biomass Bioenergy, 25(3), pp. 309–318. [CrossRef]
Pratas, M. J. , Freitas, S. V. , Oliveira, M. B. , Monteiro, S. C. , Lima, Á. S. , and Coutinho, J. A. , 2011, “Biodiesel Density: Experimental Measurements and Prediction Models,” Energy Fuels, 25(5), pp. 2333–2340. [CrossRef]
Baroutian, S. , Aroua, M. K. , Raman, A. A. , and Sulaiman, N. M. N. , 2008, “Density of Palm Oil-Based Methyl Ester,” J. Chem. Eng. Data, 53(3), pp. 877–880. [CrossRef]
Ivaniš, G. R. , Radović, I. R. , Veljković, V. B. , and Kijevčanin, M. L. , 2016, “Biodiesel Density and Derived Thermodynamic Properties at High Pressures and Moderate Temperatures,” Fuel, 165, pp. 244–251. [CrossRef]
Barabás, I. , 2013, “Predicting the Temperature Dependent Density of Biodiesel–Diesel–Bioethanol Blends,” Fuel, 109, pp. 563–574. [CrossRef]
Prieto, N. M. , Ferreira, A. G. , Portugal, A. T. , Moreira, R. J. , and Santos, J. B. , 2015, “Correlation and Prediction of Biodiesel Density for Extended Ranges of Temperature and Pressure,” Fuel, 141, pp. 23–38. [CrossRef]
Ramírez-Verduzco, L. F. , García-Flores, B. E. , Rodríguez-Rodríguez, J. E. , and del Rayo Jaramillo-Jacob, A. , 2011, “Prediction of the Density and Viscosity in Biodiesel Blends at Various Temperatures,” Fuel, 90(5), pp. 1751–1761. [CrossRef]
Ramírez Verduzco, L. F. , 2013, “Density and Viscosity of Biodiesel as a Function of Temperature: Empirical Models,” Renewable Sustainable Energy Rev., 19, pp. 652–665. [CrossRef]
Yoon, S. H. , Park, S. H. , and Lee, C. S. , 2007, “Experimental Investigation on the Fuel Properties of Biodiesel and Its Blends at Various Temperatures,” Energy Fuels, 22(1), pp. 652–656. [CrossRef]
Tate, R. E. , Watts, K. C. , Allen, C. A. W. , and Wilkie, K. I. , 2006, “The Densities of Three Biodiesel Fuels at Temperatures Up to 300 C,” Fuel, 85(7–8), pp. 1004–1009. [CrossRef]
Agarwal, A. K. , Dhar, A. , Gupta, J. G. , Kim, W. I. , Lee, C. S. , and Park, S. , 2014, “Effect of Fuel Injection Pressure and Injection Timing on Spray Characteristics and Particulate Size–Number Distribution in a Biodiesel Fuelled Common Rail Direct Injection Diesel Engine,” Appl. Energy, 130, pp. 212–221. [CrossRef]
Freitas, S. V. , Segovia, J. J. , Martín, M. C. , Zambrano, J. , Oliveira, M. B. , Lima, Á. S. , and Coutinho, J. A. , 2014, “Measurement and Prediction of High-Pressure Viscosities of Biodiesel Fuels,” Fuel, 122, pp. 223–228. [CrossRef]
Shahabuddin, M. , Kalam, M. A. , Masjuki, H. H. , Bhuiya, M. M. K. , and Mofijur, M. , 2012, “An Experimental investigation Into biodiesel Stability by Means of Oxidation and Property Determination,” Energy, 44(1), pp. 616–622. [CrossRef]
Ramírez-Verduzco, L. F. , Rodríguez-Rodríguez, J. E. , and del Rayo Jaramillo-Jacob, A. , 2012, “Predicting Cetane Number, Kinematic Viscosity, Density and Higher Heating Value of Biodiesel From Its Fatty Acid Methyl Ester Composition,” Fuel, 91(1), pp. 102–111. [CrossRef]
Knothe, G. , 2008, “Designer” Biodiesel: Optimizing Fatty Ester Composition to Improve Fuel Properties,” Energy Fuels, 22(2), pp. 1358–1364. [CrossRef]
Saiban, S. , and Brown, T. C. , 1997, “Kinetic Model for Cloud-Point Blending of Diesel Fuels,” Fuel, 76(14–15), pp. 1417–1423. [CrossRef]
Knothe, G. , and Steidley, K. R. , 2005, “Kinematic Viscosity of Biodiesel Fuel Components and Related Compounds. Influence of Compound Structure and Comparison to Petrodiesel Fuel Components,” Fuel, 84(9), pp. 1059–1065. [CrossRef]
Ejim, C. E. , Fleck, B. A. , and Amirfazli, A. , 2007, “Analytical Study for Atomization of Biodiesels and Their Blends in a Typical Injector: Surface Tension and Viscosity Effects,” Fuel, 86(10–11), pp. 1534–1544. [CrossRef]
Ahmed, M. A. , Ejim, C. E. , Fleck, B. A. , and Amirfazli, A. , 2006, “Effect of Biodiesel Fuel Properties and Its Blends on Atomization,” SAE Technical Paper No. 2006-01-0893.
Shu, Q. , Wang, J. , Peng, B. , Wang, D. , and Wang, G. , 2008, “Predicting the Surface Tension of Biodiesel Fuels by a Mixture Topological Index Method, at 313 K,” Fuel, 87(17–18), pp. 3586–3590. [CrossRef]
Pratas, M. J. , Freitas, S. , Oliveira, M. B. , Monteiro, S. C. , Lima, A. S. , and Coutinho, J. A. , 2010, “Densities and Viscosities of Fatty Acid Methyl and Ethyl Esters,” J. Chem. Eng. Data, 55(9), pp. 3983–3990. [CrossRef]
Davanlou, A. , Lee, J. D. , Basu, S. , and Kumar, R. , 2015, “Effect of Viscosity and Surface Tension on Breakup and Coalescence of Bicomponent Sprays,” Chem. Eng. Sci., 131, pp. 243–255. [CrossRef]
Phankosol, S. , Sudaprasert, K. , Lilitchan, S. , Aryusuk, K. , and Krisnangkura, K. , 2014, “Estimation of Surface Tension of Fatty Acid Methyl Ester and Biodiesel at Different Temperatures,” Fuel, 126, pp. 162–168. [CrossRef]
Freitas, S. V. , Oliveira, M. B. , Queimada, A. J. , Pratas, M. J. , Lima, Á. S. , and Coutinho, J. A. , 2011, “Measurement and Prediction of Biodiesel Surface Tensions,” Energy Fuels, 25(10), pp. 4811–4817. [CrossRef]
Srivastava, A. , and Prasad, R. , 2000, “Triglycerides-Based Diesel Fuels,” Renewable Sustainable Energy Rev., 4(2), pp. 111–133. [CrossRef]
Soriano , N. U., Jr , Migo, V. P. , and Matsumura, M. , 2006, “Ozonized Vegetable Oil as Pour Point Depressant for Neat Biodiesel,” Fuel, 85(1), pp. 25–31. [CrossRef]
Boog, J. H. F. , Silveira, E. L. C. , De Caland, L. B. , and Tubino, M. , 2011, “Determining the Residual Alcohol in Biodiesel Through Its Flash Point,” Fuel, 90(2), pp. 905–907. [CrossRef]
Graboski, M. S. , and McCormick, R. L. , 1998, “Combustion of Fat and Vegetable Oil Derived Fuels in Diesel Engines,” Prog. Energy Combust. Sci., 24(2), pp. 125–164. [CrossRef]
Mejía, J. D. , Salgado, N. , and Orrego, C. E. , 2013, “Effect of Blends of Diesel and Palm-Castor Biodiesels on Viscosity, Cloud Point and Flash Point,” Ind. Crops Prod., 43, pp. 791–797. [CrossRef]
Sarin, A. , Arora, R. , Singh, N. P. , Sarin, R. , Malhotra, R. K. , and Kundu, K. , 2009, “Effect of Blends of Palm-Jatropha-Pongamia Biodiesels on Cloud Point and Pour Point,” Energy, 34(11), pp. 2016–2021. [CrossRef]
Agarwal, A. K. , 2007, “Biofuels (Alcohols and Biodiesel) Applications as Fuels for Internal Combustion Engines,” Prog. Energy Combust. Sci., 33(3), pp. 233–271. [CrossRef]
Guo, Y. , Wei, H. , Yang, F. , Li, D. , Fang, W. , and Lin, R. , 2009, “Study on Volatility and Flash Point of the Pseudo-Binary Mixtures of Sunflowerseed-Based Biodiesel+ Ethanol,” J. Hazardous Mater., 167(1–3), pp. 625–629. [CrossRef]
Alptekin, E. , and Canakci, M. , 2008, “Determination of the Density and the Viscosities of Biodiesel–Diesel Fuel Blends,” Renewable Energy, 33(12), pp. 2623–2630. [CrossRef]
Rashed, M. M. , Kalam, M. A. , Masjuki, H. H. , Mofijur, M. , Rasul, M. G. , and Zulkifli, N. W. M. , 2016, “Performance and Emission Characteristics of a Diesel Engine Fueled With Palm, Jatropha, and Moringa Oil Methyl Ester,” Ind. Crops Products, 79, pp. 70–76. [CrossRef]
Tiwari, A. K. , Kumar, A. , and Raheman, H. , 2007, “Biodiesel Production From Jatropha Oil (Jatropha Curcas) With High Free Fatty Acids: An Optimized Process,” Biomass Bioenergy, 31(8), pp. 569–575. [CrossRef]
Agarwal, A. K. , and Dhar, A. , 2013, “Experimental Investigations of Performance, Emission and Combustion Characteristics of Karanja Oil Blends Fuelled DICI Engine,” Renewable Energy, 52, pp. 283–291. [CrossRef]
Lee, C. S. , Park, S. W. , and Kwon, S. I. , 2005, “An Experimental Study on the Atomization and Combustion Characteristics of Biodiesel-Blended Fuels,” Energy Fuels, 19(5), pp. 2201–2208. [CrossRef]
Mosarof, M. H. , Kalam, M. A. , Masjuki, H. H. , Alabdulkarem, A. , Habibullah, M. , Arslan, A. , and Monirul, I. M. , 2016, “Assessment of Friction and Wear Characteristics of Calophyllum Inophyllum and Palm Biodiesel,” Ind. Crops Prod., 83, pp. 470–483. [CrossRef]
Tomic, M. , Savin, L. , Micic, R. , Simikic, M. , and Furman, T. , 2014, “Possibility of Using Biodiesel From Sunflower Oil as an Additive for the Improvement of Lubrication Properties of Low-Sulfur Diesel Fuel,” Energy, 65, pp. 101–108. [CrossRef]
Knothe, G. , and Steidley, K. R. , 2005, “Lubricity of Components of Biodiesel and Petrodiesel. The Origin of Biodiesel Lubricity,” Energ. Fuel., 19(3), pp. 1192–1200. [CrossRef]
Kinast, J. A. , 2003, “Production of Biodiesels From Multiple Feedstocks and Properties of Biodiesels and Biodiesel/Diesel Blends: Final Report; Report 1 in a Series of 6,” National Renewable Energy Lab., Golden, CO, Report No. NREL/SR-510-31460.
Reddy, M. S. , Sharma, N. , and Agarwal, A. K. , 2016, “Effect of Straight Vegetable Oil Blends and Biodiesel Blends on Wear of Mechanical Fuel Injection Equipment of a Constant Speed Diesel Engine,” Renewable Energy, 99, pp. 1008–1018. [CrossRef]
Cook, S. , Barker, J. , Reid, J. , and Richards, P. , 2012, “Possible Mechanism for Poor Diesel Fuel Lubricity in the Field,” SAE Int. J. Fuels Lubr., 5(2), pp. 711–720. [CrossRef]
Graboski, M. S. , McCormick, R. L. , Alleman, T. L. , and Herring, A. M. , 2003, “The Effect of Biodiesel Composition on Engine Emissions From a DDC Series 60 Diesel Engine,” National Renewable Energy Laboratory, Golden, CO, Final Report No. NREL/SR-510-31461. http://biodiesel.org/reports/20030201_gen-361.pdf
Bechtold, R. L. , 2002, Alternative Fuels: Transportation Fuels for Today and Tomorrow, SAE International, Warrendale, USA., pp. 63–73.
Knothe, G. , Matheaus, A. C. , and Ryan, T. W., III , 2003, “Cetane Numbers of Branched and Straight-Chain Fatty Esters Determined in an Ignition Quality Tester,” Fuel, 82(8), pp. 971–975. [CrossRef]
Gülüm, M. , and Bilgin, A. , 2015, “Density, Flash Point and Heating Value Variations of Corn Oil Biodiesel–Diesel Fuel Blends,” Fuel Process. Technol., 134, pp. 456–464. [CrossRef]
Lapuerta, M. , Armas, O. , and Rodriguez-Fernandez, J. , 2008, “Effect of Biodiesel Fuels on Diesel Engine Emissions,” Prog. Energy Combust. Sci., 34(2), pp. 198–223. [CrossRef]
Lopes, S. M. , Furey, R. , and Geng, P. , 2013, “Calculation of Heating Value for Diesel Fuels Containing Biodiesel,” SAE Int. J. Fuels Lubr., 6(2), pp. 407–418. [CrossRef]
Shehata, M. S. , Attia, A. M. , and Razek, S. A. , 2015, “Corn and Soybean Biodiesel Blends as Alternative Fuels for Diesel Engine at Different Injection Pressures,” Fuel, 161, pp. 49–58. [CrossRef]
Rathore, V. , Tyagi, S. , Newalkar, B. , and Badoni, R. P. , 2015, “Jatropha and Karanja Oil Derived DMC–Biodiesel Synthesis: A Kinetics Study,” Fuel, 140, pp. 597–608. [CrossRef]
Ali, O. M. , Mamat, R. , Abdullah, N. R. , and Abdullah, A. A. , 2016, “Analysis of Blended Fuel Properties and Engine Performance With Palm Biodiesel–Diesel Blended Fuel,” Renewable Energy, 86, pp. 59–67. [CrossRef]
Merlin, A. Z. , Marcel, O. A. , Louis Max, A. O. , Salem, C. , and Jean, G. , 2015, “Development and Experimental Investigation of a Biodiesel From a Nonedible Woody Plant: The Neem,” Renewable Sustainable Energy Rev., 52, pp. 201–208. [CrossRef]
Agarwal, A. K. , Dhar, A. , Gupta, J. G. , Kim, W. I. , Choi, K. , Lee, C. S. , and Park, S. , 2015, “Effect of Fuel Injection Pressure and Injection Timing of Karanja Biodiesel Blends on Fuel Spray, Engine Performance, Emissions and Combustion Characteristics,” Energy Convers. Manage., 91, pp. 302–314. [CrossRef]
Goodrum, J. W. , and Geller, D. P. , 2005, “Influence of Fatty Acid Methyl Esters From Hydroxylated Vegetable Oils on Diesel Fuel Lubricity,” Bioresour. Technol., 96(7), pp. 851–855. [CrossRef] [PubMed]
Patel, C. , Lee, S. , Tiwari, N. , Agarwal, A. K. , Lee, C. S. , and Park, S. , 2016, “Spray Characterization, Combustion, Noise and Vibrations Investigations of Jatropha Biodiesel Fuelled Genset Engine,” Fuel, 185, pp. 410–420. [CrossRef]
Koo, J. Y. , and Martin, J. K. , 1990, “Droplet Sizes and Velocities in a Transient Diesel Fuel Spray,” SAE Trans., 99(3), pp. 929–947. https://www.jstor.org/stable/44548552
Jiotode, Y. , and Agarwal, A. K. , 2016, “In-Cylinder Combustion Visualization of Jatropha Straight Vegetable Oil and Mineral Diesel Using High Temperature Industrial Endoscopy for Spatial Temperature and Soot Distribution,” Fuel Process. Technol., 153, pp. 9–18. [CrossRef]
Gopinath, A. , Puhan, S. , and Nagarajan, G. , 2009, “Theoretical Modeling of Iodine Value and Saponification Value of Biodiesel Fuels From Their Fatty Acid Composition,” Renewable Energy, 34(7), pp. 1806–1811. [CrossRef]
Benjumea, P. , Agudelo, J. , and Agudelo, A. , 2008, “Basic Properties of Palm Oil Biodiesel–Diesel Blends,” Fuel, 87(10–11), pp. 2069–2075. [CrossRef]
Patel, C. , Agarwal, A. K. , Tiwari, N. , Lee, S. , Lee, C. S. , and Park, S. , 2016, “Combustion, Noise, Vibrations and Spray Characterization for Karanja Biodiesel Fuelled Engine,” Appl. Therm. Eng., 106, pp. 506–517. [CrossRef]
Guido, C. , Beatrice, C. , D., Iorio , S., Napolitano , P., Di , Blasio, G. , Vassallo, A. , and Ciaravino, C. , 2011, “Assessment of Closed-Loop Combustion Control Capability for Biodiesel Blending Detection and Combustion Impact Mitigation for an Euro5 Automotive Diesel Engine,” SAE Paper No. 2011-01-1193.
Knothe, G. , 2009, “Improving Biodiesel Fuel Properties by Modifying Fatty Ester Composition,” Energy Environ. Sci., 2(7), pp. 759–766. [CrossRef]
Zuleta, E. C. , Baena, L. , Rios, L. A. , and Calderón, J. A. , 2012, “The Oxidative Stability of Biodiesel and Its Impact on the Deterioration of Metallic and Polymeric Materials: A Review,” J. Braz. Chem. Soc., 23(12), pp. 2159–2175. [CrossRef]
Agarwal, A. K. , and Khurana, D. , 2013, “Long-Term Storage Oxidation Stability of Karanja Biodiesel With the Use of Antioxidants,” Fuel Process. Technol., 106, pp. 447–452. [CrossRef]
Marčič, M. , 1999, “A New Method for Measuring Fuel-Injection Rate,” Flow Meas. Instrum., 10(3), pp. 159–165. [CrossRef]
Moser, B. R. , 2016, “Fuel Property Enhancement of Biodiesel Fuels From Common and Alternative Feedstocks Via Complementary Blending,” Renewable Energy, 85, pp. 819–825. [CrossRef]
Zhao, H. , 2009, Advanced Direct Injection Combustion Engine Technologies and Development: Diesel Engines, Vol. 2, Elsevier, Cambridge, UK.
Park, S. H. , Kim, H. J. , Suh, H. K. , and Lee, C. S. , 2009, “A Study on the Fuel Injection and Atomization Characteristics of Soybean Oil Methyl Ester (SME),” Int. J. Heat Fluid Flow, 30(1), pp. 108–116. [CrossRef]
Marčič, M. , 2002, “Deformational Injection Rate Measuring Method,” Rev. Sci. Instrum., 73(9), pp. 3373–3377. [CrossRef]
Postrioti, L. , Mariani, F. , and Battistoni, M. , 2012, “Experimental and Numerical Momentum Flux Evaluation of High Pressure Diesel Spray,” Fuel, 98, pp. 149–163. [CrossRef]
Arcoumanis, C. , Baniasad, M. S. , and Banias, M. S. , 1993, “Analysis of Consecutive Fuel Injection Rate Signals Obtained by the Zeuch and Bosch Methods,” SAE Trans., 102(3), pp. 1371–1384. https://www.jstor.org/stable/44611469
Tinprabath, P. , Hespel, C. , Chanchaona, S. , and Foucher, F. , 2015, “Influence of Biodiesel and Diesel Fuel Blends on the Injection Rate Under Cold Conditions,” Fuel, 144, pp. 80–89. [CrossRef]
Moon, S. , Tsujimura, T. , Gao, Y. , Park, S. , Wang, J. , Kurimoto, N. , Nishijima, Y. , and Oguma, M. , 2014, “Biodiesel Effects on Transient Needle Motion and Near-Exit Flow Characteristics of a High-Pressure Diesel Injector,” Int. J. Engine Res., 15(4), pp. 504–518. [CrossRef]
Doudou, A. , and Maslouhi, A. , 2007, “A Macro-Microscopic Investigation of High-Pressure Sprays Injected by a Common Rail System,” J. Mech. Sci. Technol., 21(8), pp. 1284–1292. [CrossRef]
Pickett, L. M. , Kook, S. , and Williams, T. C. , 2009, “Visualization of Diesel Spray Penetration, Cool-Flame, Ignition, High-Temperature Combustion, and Soot Formation Using High-Speed Imaging,” SAE Int. J. Engines, 2(1), pp. 439–459. [CrossRef]
Genzale, C. L. , Pickett, L. M. , and Kook, S. , 2010, “Liquid Penetration of Diesel and Biodiesel Sprays at Late-Cycle Post-Injection Conditions,” SAE Int. J. Engines, 3(1), pp. 479–495. [CrossRef]
Kostas, J. , Honnery, D. , Soria, J. , Kastengren, A. , Liu, Z. , Powell, C. F. , and Wang, J. , 2009, “Effect of Nozzle Transients and Compressibility on the Penetration of Fuel Sprays,” Appl. Phys. Lett., 95(2), p. 024101. [CrossRef]
Agarwal, A. K. , Som, S. , Shukla, P. C. , Goyal, H. , and Longman, D. , 2015, “In-Nozzle Flow and Spray Characteristics for Mineral Diesel, Karanja, and Jatropha Biodiesels,” Appl. Energy, 156, pp. 138–148. [CrossRef]
Chong, C. T. , and Hochgreb, S. , 2015, “Spray and Combustion Characteristics of Biodiesel: Non-Reacting and Reacting,” Int. Biodeterior. Biodegrad., 102, pp. 353–360. [CrossRef]
Mohan, B. , Yang, W. , Tay, K. L. , and Yu, W. , 2014, “Experimental Study of Spray Characteristics of Biodiesel Derived From Waste Cooking Oil,” Energy Convers. Manage., 88, pp. 622–632. [CrossRef]
Kuti, O. A. , Nishida, K. , and Zhu, J. , 2013, “Experimental Studies on Spray and Gas Entrainment Characteristics of Biodiesel Fuel: Implications of Gas Entrained and Fuel Oxygen Content on Soot Formation,” Energy, 57, pp. 434–442. [CrossRef]
Liu, H. , Huo, M. , Liu, Y. , Wang, X. , Wang, H. , Yao, M. , and Chia-fon, F. L. , 2014, “Time-Resolved Spray, Flame, Soot Quantitative Measurement Fueling n-Butanol and Soybean Biodiesel in a Constant Volume Chamber Under Various Ambient Temperatures,” Fuel, 133, pp. 317–325. [CrossRef]
Hong, C. H. , Choi, W. , Choi, B. , and Lee, G. , 2003, “Characteristics of High Pressure Bio-Diesel Fuel Spray,” Trans. KSAE, 11(2), pp. 56–62.
Tinprabath, P. , Hespel, C. , Chanchaona, S. , and Foucher, F. , 2016, “Impact of Cold Conditions on Diesel Injection Processes of Biodiesel Blends,” Renewable Energy, 96, pp. 270–280. [CrossRef]
Mo, J. , Tang, C. , Li, J. , Guan, L. , and Huang, Z. , 2016, “Experimental Investigation on the Effect of n-Butanol Blending on Spray Characteristics of Soybean Biodiesel in a Common-Rail Fuel Injection System,” Fuel, 182, pp. 391–401. [CrossRef]
Bayvel, L. P. , 1993, Liquid Atomization, Taylor & Francis, Washington, DC.
Park, S. H. , Kim, H. J. , Suh, H. K. , and Lee, C. S. , 2009, “Experimental and Numerical Analysis of Spray-[Atomization Characteristics of Biodiesel Fuel in Various Fuel and Ambient Temperatures Conditions,” Int. J. Heat Fluid Flow, 30(5), pp. 960–970. [CrossRef]
Manin, J. , Bardi, M. , Pickett, L. M. , Dahms, R. N. , and Oefelein, J. C. , 2014, “Microscopic Investigation of the Atomization and Mixing Processes of Diesel Sprays Injected Into High Pressure and Temperature Environments,” Fuel, 134, pp. 531–543. [CrossRef]
Anantharaman, G. , Krishnamurthy, S. , and Ramalingam, V. , 2013, “A Review on Combustion, Performance, and Emission Characteristics of Fuels Derived From Oil Seed Crops (Biodiesels),” Aust. J. Crop Sci., 7(9), pp. 1350–1354. http://www.cropj.com/sariam3740_7_9_2013_1350_1354.pdf
Tesfa, B. , Mishra, R. , Zhang, C. , Gu, F. , and Ball, A. D. , 2013, “Combustion and Performance Characteristics of CI (Compression Ignition) Engine Running With Biodiesel,” Energy, 51, pp. 101–115. [CrossRef]
Gopal, K. N. , Pal, A. , Sharma, S. , Samanchi, C. , Sathyanarayanan, K. , and Elango, T. , 2014, “Investigation of Emissions and Combustion Characteristics of a CI Engine Fueled With Waste Cooking Oil Methyl Ester and Diesel Blends,” Alexandria Eng. J., 53(2), pp. 281–287. [CrossRef]
Gopal, K. N. , and Karupparaj, R. T. , 2014, “Effect of Pongamia Biodiesel on Emission and Combustion Characteristics of DI Compression Ignition Engine,” Ain Shams Eng. J., 6(1), pp. 297–305. [CrossRef]
Lin, B. F. , Huang, J. H. , and Huang, D. Y. , 2009, “Experimental Study of the Effects of Vegetable Oil Methyl Ester on DI Diesel Engine Performance Characteristics and Pollutant Emissions,” Fuel, 88(9), pp. 1779–1785. [CrossRef]
Lahane, S. , and Subramanian, K. A. , 2015, “Effect of Different Percentages of Biodiesel–Diesel Blends on Injection, Spray, Combustion, Performance, and Emission Characteristics of a Diesel Engine,” Fuel, 139, pp. 537–545. [CrossRef]
Sinha, S. , and Agarwal, A. K. , 2007, “Experimental Investigation of the Combustion Characteristics of a Biodiesel (Rice-Bran Oil Methyl Ester)-Fuelled Direct-Injection Transportation Diesel Engine,” Proc. Inst. Mech. Eng., Part D, 221(8), pp. 921–932. [CrossRef]
Agarwal, A. K. , Agarwal, A. , and Singh, A. P. , 2015, “Time Resolved in-Situ Biodiesel Combustion Visualization Using Engine Endoscopy,” Measurement, 69, pp. 236–249. [CrossRef]
Agarwal, A. K. , Singh, A. P. , Agarwal, A. , Jeon, J. , Lee, C. S. , and Park, S. , 2016, “Spatial Combustion Analysis of Biodiesel Fueled Engine Using Combustion Chamber Endoscopy and Modelling,” Renewable Energy, 98, pp. 292–303. [CrossRef]
Yoon, S. K. , Kim, M. S. , Kim, H. J. , and Choi, N. J. , 2014, “Effects of Canola Oil Biodiesel Fuel Blends on Combustion, Performance, and Emissions Reduction in a Common Rail Diesel Engine,” Energies, 7(12), pp. 8132–8149. [CrossRef]
Sathiyagnanam, A. P. , and Saravanan, C. G. , 2011, “Experimental Studies on the Combustion Characteristics and Performance of a Direct Injection Engine Fueled With Biodiesel/Diesel Blends With SCR,” World Congress on Engineering (WCE), July 6–8, London, pp. 1–6. https://pdfs.semanticscholar.org/adec/16eed1294a709b1ea503e6c199f9aa731986.pdf
Labeckas, G. , Slavinskas, S. , and Mažeika, M. , 2014, “The Effect of Ethanol–Diesel–Biodiesel Blends on Combustion, Performance and Emissions of a Direct Injection Diesel Engine,” Energy Convers. Manage., 79, pp. 698–720. [CrossRef]
How, H. G. , Masjuki, H. H. , Kalam, M. A. , and Teoh, Y. H. , 2014, “Engine Performance, Emission and Combustion Characteristics of a Common-Rail Diesel Engine Fuelled With Bioethanol as a Fuel Additive in Coconut Oil Biodiesel Blends,” Energy Procedia, 61, pp. 1655–1659. [CrossRef]
Dhar, A. , and Agarwal, A. K. , 2015, “Experimental Investigations of the Effect of Pilot Injection on Performance, Emissions and Combustion Characteristics of Karanja Biodiesel Fuelled CRDI Engine,” Energy Convers. Manage., 93, pp. 357–366. [CrossRef]
Nalgundwar, A. , Paul, B. , and Sharma, S. K. , 2016, “Comparison of Performance and Emissions Characteristics of DI CI Engine Fueled With Dual Biodiesel Blends of Palm and Jatropha,” Fuel, 173, pp. 172–179. [CrossRef]
Liaquat, A. M. , Masjuki, H. H. , Kalam, M. A. , Fattah, I. R. , Hazrat, M. A. , Varman, M. , Mofijur, M. , and Shahabuddin, M. , 2013, “Effect of Coconut Biodiesel Blended Fuels on Engine Performance and Emission Characteristics,” Procedia Eng., 56, pp. 583–590. [CrossRef]
Rajaraman, S. , Yashwanth, G. K. , Rajan, T. , Kumaran, R. T. , and Raghu, P. , 2009, “Experimental Investigations of Performance and Characteristics Emission Characteristics of Moringa Oil Methyl Ester and Its Diesel Blends in a Single Cylinder Direct Injection Diesel Engine,” ASME Paper No. IMECE2009-11265.
Mofijur, M. , Masjuki, H. H. , Kalam, M. A. , Atabani, A. E. , Arbab, M. I. , Cheng, S. F. , and Gouk, S. W. , 2014, “Properties and Use of Moringa Oleifera Biodiesel and Diesel Fuel Blends in a Multi-Cylinder Diesel Engine,” Energy Convers. Manage., 82, pp. 169–176. [CrossRef]
Rahman, M. M. , Hassan, M. H. , Kalam, M. A. , Atabani, A. E. , Memon, L. A. , and Rahman, S. A. , 2014, “Performance and Emission Analysis of Jatropha Curcas and Moringa Oleifera Methyl Ester Fuel Blends in a Multi-Cylinder Diesel Engine,” J. Cleaner Prod., 65, pp. 304–310. [CrossRef]
Mofijur, M. , Masjuki, H. H. , Kalam, M. A. , Atabani, A. E. , Fattah, I. R. , and Mobarak, H. M. , 2014, “Comparative Evaluation of Performance and Emission Characteristics of Moringa Oleifera and Palm Oil Based Biodiesel in a Diesel Engine,” Ind. Crops Prod., 53, pp. 78–84. [CrossRef]
Al Dawody, M. F. , and Bhatti, S. K. , 2014, “Experimental and Computational Investigations for Combustion, Performance and Emission Parameters of a Diesel Engine Fueled With Soybean Biodiesel-Diesel Blends,” Energy Procedia, 52, pp. 421–430. [CrossRef]
Gautam, A. , and Agarwal, A. K. , 2013, “Experimental Investigations of Comparative Performance, Emission and Combustion Characteristics of a Cottonseed Biodiesel-Fueled Four-Stroke Locomotive Diesel Engine,” Int. J. Engine Res., 14(4), pp. 354–372. [CrossRef]
Dhar, A. , and Agarwal, A. K. , 2014, “Performance, Emissions and Combustion Characteristics of Karanja Biodiesel in a Transportation Engine,” Fuel, 119, pp. 70–80. [CrossRef]
Tüccar, G. , Tosun, E. , Özgür, T. , and Aydın, K. , 2014, “Diesel Engine Emissions and Performance From Blends of Citrus Sinensis Biodiesel and Diesel Fuel,” Fuel, 132, pp. 7–11. [CrossRef]
Azad, A. K. , Rasul, M. G. , Khan, M. M. K. , Sharma, S. C. , and Islam, R. , 2015, “Prospect of Moringa Seed [Oil as a Sustainable Biodiesel Fuel in Australia: A Review,” Procedia Eng., 105, pp. 601–606. [CrossRef]
Tüccar, G. , Özgür, T. , and Aydın, K. , 2014, “Effect of Diesel–Microalgae Biodiesel–Butanol Blends on Performance and Emissions of Diesel Engine,” Fuel, 132, pp. 47–52. [CrossRef]
Imdadul, H. K. , Masjuki, H. H. , Kalam, M. A. , Zulkifli, N. W. M. , Alabdulkarem, A. , Rashed, M. M. , Teoh, Y. H. , and How, H. G. , 2016, “Higher Alcohol–Biodiesel–Diesel Blends: An Approach for Improving the Performance, Emission, and Combustion of a Light-Duty Diesel Engine,” Energy Convers. Manage., 111, pp. 174–185. [CrossRef]
Prabu, A. , 2018, “Engine Characteristic Studies by Application of Antioxidants and Nanoparticles as Additives in Biodiesel Diesel Blends,” ASME J. Energy Resour. Technol., 140(8), p. 082203. [CrossRef]
Wood, B. M. , Kirwan, K. , Maggs, S. , Meredith, J. , and Coles, S. R. , 2015, “Study of Combustion Performance of Biodiesel for Potential Application in Motorsport,” J. Cleaner Prod., 93, pp. 167–173. [CrossRef]
Dhar, A. , Kevin, R. , and Agarwal, A. K. , 2012, “Production of Biodiesel From High-FFA Neem Oil and Its Performance, Emission and Combustion Characterization in a Single Cylinder DICI Engine,” Fuel Process. Technol., 97, pp. 118–129. [CrossRef]
Paul, G. , Datta, A. , and Mandal, B. K. , 2014, “An Experimental and Numerical Investigation of the Performance, Combustion and Emission Characteristics of a Diesel Engine Fueled With Jatropha Biodiesel,” Energy Procedia, 54, pp. 455–467. [CrossRef]
Prakash, R. , Singh, R. K. , and Murugan, S. , 2015, “Experimental Studies on Combustion, Performance and Emission Characteristics of Diesel Engine Using Different Biodiesel Bio Oil Emulsions,” J. Energy Inst., 88(1), pp. 64–75. [CrossRef]
Roy, M. M. , Wang, W. , and Alawi, M. , 2014, “Performance and Emissions of a Diesel Engine Fueled by Biodiesel–Diesel, Biodiesel–Diesel-Additive and Kerosene–Biodiesel Blends,” Energy Convers. Manage., 84, pp. 164–173. [CrossRef]
Can, Ö. , 2014, “Combustion Characteristics, Performance and Exhaust Emissions of a Diesel Engine Fueled With a Waste Cooking Oil Biodiesel Mixture,” Energy Convers. Manage., 87, pp. 676–686. [CrossRef]
Yilmaz, N. , 2012, “Comparative Analysis of Biodiesel–Ethanol–Diesel and Biodiesel–Methanol–Diesel Blends in a Diesel Engine,” Energy, 40(1), pp. 210–213. [CrossRef]
Yasin, M. H. M. , Mamat, R. , Yusop, A. F. , Aziz, A. , and Najafi, G. , 2015, “Comparative Study on Biodiesel-Methanol-Diesel Low Proportion Blends Operating With a Diesel Engine,” Energy Procedia, 75, pp. 10–16. [CrossRef]
Yilmaz, N. , Vigil, F. M. , Benalil, K. , Davis, S. M. , and Calva, A. , 2014, “Effect of Biodiesel–Butanol Fuel Blends on Emissions and Performance Characteristics of a Diesel Engine,” Fuel, 135, pp. 46–50. [CrossRef]
Balamurugan, T. , and Nalini, R. , 2014, “Effect of Blending Alcohol With Diesel on Performance, Combustion and Emission Characteristics of Four Stroke Diesel Engine-an Experimental Study,” Int. J. ChemTech Res., 6(1), pp. 750–762. http://sphinxsai.com/2014/ChemTech/JM14CT51_100/CT=85(750-762)JM14.pdf
Fang, Q. , Fang, J. , Zhuang, J. , and Huang, Z. , 2013, “Effects of Ethanol–Diesel–Biodiesel Blends on Combustion and Emissions in Premixed Low Temperature Combustion,” Appl. Therm. Eng., 54(2), pp. 541–548. [CrossRef]
Zhang, Z.-H. , and Balasubramanian, R. , 2014, “Influence of Butanol Addition to Diesel–Biodiesel Blend on Engine Performance and Particulate Emissions of a Stationary Diesel Engine,” Appl. Energy, 119, pp. 530–536. [CrossRef]
Nayak, S. K. , and Pattanaik, B. P. , 2014, “Experimental Investigation on Performance and Emission Characteristics of a Diesel Engine Fuelled With Mahua Biodiesel Using Additive,” Energy Procedia, 54, pp. 569–579. [CrossRef]
Can, Ö. , Öztürk, E. , Solmaz, H. , Aksoy, F. , Çinar, C. , and Yücesu, H. S. , 2016, “Combined Effects of Soybean Biodiesel Fuel Addition and EGR Application on the Combustion and Exhaust Emissions in a Diesel Engine,” Appl. Therm. Eng., 95, pp. 115–124. [CrossRef]
O., Mofijur , M., Rasul , M. G. , and Hyde, J. , 2015, “Recent Developments on Internal Combustion Engine Performance and Emissions Fuelled With Biodiesel-Diesel-Ethanol Blends,” Procedia Eng., 105, pp. 658–664. [CrossRef]
Singh, A. P. , and Agarwal, A. K. , 2018, “Evaluation of Fuel Injection Strategies for Biodiesel-Fueled CRDI Engine Development and Particulate Studies,” ASME J. Energy Resour. Technol., 140(10), p. 102201. [CrossRef]
Kittelson, D. B. , 1998, “Engines and Nanoparticles: A Review,” J. Aerosol. Sci., 29(5–6), pp. 575–588. [CrossRef]
Dusek, U. , and Amann, M. , 2000, “Secondary Organic Aerosol–Formation Mechanisms and Source Contributions in Europe,” International Institute for Applied Systems Analysis, Laxenburg, Austria, Report No. IR-00-066. http://pure.iiasa.ac.at/id/eprint/6180/
Kawano, D. , Ishii, H. , Goto, Y. , Noda, A. , and Aoyagi, Y. , 2006, “Application of Biodiesel Fuel to Modern Diesel Engine,” SAE Technical Paper No. 2006-01-0233.
Hare, C. T. , Springer, K. J. , and Bradow, R. L. , 1976, “Fuel and Additive Effects on Diesel Particulate—Development and Demonstration of Methodology,” SAE Trans., 85(1), pp. 527–555. https://www.jstor.org/stable/44644057
Müller, J. O. , Su, D. S. , Jentoft, R. E. , Wild, U. , and Schlögl, R. , 2006, “Diesel Engine Exhaust Emission: Oxidative Behavior and Microstructure of Black Smoke Soot Particulate,” Environ. Sci. Technol., 40(4), pp. 1231–1236. [CrossRef] [PubMed]
Funkenbusch, E. F. , Leddy, D. G. , and Johnson, J. H. , 1979, “The Characterization of the Soluble Organic Fraction of Diesel Particulate Matter,” SAE Trans., 88(2), pp. 1540–1560. https://www.jstor.org/stable/44658164
Johnson, J. E. , and Kittelson, D. B. , 1994, “Physical Factors Affecting Hydrocarbon Oxidation in a Diesel Oxidation Catalyst,” SAE Trans., 103(3), pp. 1818–1835. https://www.jstor.org/stable/44632918
Waldenmaier, D. A. , Gratz, L. D. , Bagley, S. T. , Johnson, J. H. , and Leddy, D. G. , 1990, “The Influence of Sampling Conditions on the Repeatability of Diesel Particulate and Vapor Phase Hydrocarbon and PAH Measurements,” SAE Trans. Journal of Engines, 99(3), pp. 1431–1448. https://www.jstor.org/stable/44548164
Phuleria, H. C. , Geller, M. D. , Fine, P. M. , and Sioutas, C. , 2006, “Size-Resolved Emissions of Organic Tracers From Light-and Heavy-Duty Vehicles Measured in a California Roadway Tunnel,” Environ. Sci. Technol., 40(13), pp. 4109–4118. [CrossRef] [PubMed]
Eastwood, P. , 2008, Particulate Emissions From Vehicles, John Wiley & Sons, West Sussex, England.
Nwafor, O. M. I. , and Rice, G. , 1995, “Performance of Rapeseed Methyl Ester in Diesel Engine,” Renewable Energy, 6(3), pp. 335–342. [CrossRef]
Singh, S. K. , Agarwal, A. K. , and Sharma, M. , 2006, “Experimental Investigations of Heavy Metal Addition in Lubricating Oil and Soot Deposition in an EGR Operated Engine,” Appl. Therm. Eng., 26(2–3), pp. 259–266. [CrossRef]
Arana, C. P. , Pontoni, M. , Sen, S. , and Puri, I. K. , 2004, “Field Measurements of Soot Volume Fractions in Laminar Partially Premixed Coflow Ethylene/Air Flames,” Combust. Flame, 138(4), pp. 362–372. [CrossRef]
Rhead, M. N. , Trier, C. J. , and Petch, G. S. , 1990, “The Development of a Radiolabelling Technique to Unequivocally Determine the Products of Combustion From Specific Components of Diesel Fuel,” Fuels Automot. Diesel Engines, pp. 19–20.
Martinot, S. , Beard, P. , Roesler, J. , and Garo, A. , 2002, “Comparison and Coupling of Homogeneous Reactor and Flamelet Library Soot Modeling Approaches for Diesel Combustion,” SAE Paper No. 2001-01-3684.
D'anna, A. , and D'Alessio, A. , 2000, “Modeling the Rich Combustion of Aliphatic Hydrocarbons,” Combust. Flame, 121(3), pp. 418–429. [CrossRef]
Curran, H. J. , Fisher, E. M. , Glaude, P.-A. , Marinov, N. M. , Pitz, W. J. , Westbrook, C. K. , Layton, D. W. , Flynn, P. F. , Durrett, R. P. , Zur Loye, A. O. , and Akinyemi, O. C. , 2001, “Detailed Chemical Kinetic Modeling of Diesel Combustion With Oxygenated Fuels,” SAE Paper No. 2001-01-0653.
Wang, H. , and Frenklach, M. , 1997, “A Detailed Kinetic Modeling Study of Aromatics Formation in Laminar Premixed Acetylene and Ethylene Flames,” Combust. Flame, 110(1–2), pp. 173–221. [CrossRef]
Abbass, M. K. , Andrews, G. E. , Williams, P. T. , and Bartle, K. D. , 1989, “The Influence of Diesel Fuel Composition on Particulate PAH Emissions,” SAE Technical Paper No. 892079.
Agarwal, A. K. , Gupta, T. , Dixit, N. , and Shukla, P. C. , 2013, “Assessment of Toxic Potential of Primary and Secondary Particulates/Aerosols From Biodiesel Vis-a-Vis Mineral Diesel Fuelled Engine,” Inhalation Toxicol., 25(6), pp. 325–332. [CrossRef]
Tobias, H. J. , Beving, D. E. , Ziemann, P. J. , Sakurai, H. , Zuk, M. , McMurry, P. H. , Zarling, D. , Waytulonis, R. , and Kittelson, D. B. , 2001, “Chemical Analysis of Diesel Engine Nanoparticles Using a Nano-DMA/Thermal Desorption Particle Beam Mass Spectrometer,” Environ. Sci. Technol., 35(11), pp. 2233–2243. [CrossRef] [PubMed]
Rogge, W. F. , Hildemann, L. M. , Mazurek, M. A. , Cass, G. R. , and Simoneit, B. R. , 1993, “Sources of Fine Organic Aerosol. 2. “Noncatalyst and Catalyst-Equipped Automobiles and Heavy-Duty Diesel Trucks,” Environ. Sci. Technol., 27(4), pp. 636–651. [CrossRef]
Johnson, J. H. , Bagley, S. T. , Gratz, L. D. , and Leddy, D. G. , 1994, “A Review of Diesel Particulate Control Technology and Emissions Effects-1992 Horning Memorial Award Lecture,” SAE Trans., 103(3), pp. 210–244. https://www.jstor.org/stable/44632788
Baumgard, K. J. , and Johnson, J. H. , 1992, “The Effect of Low Sulfur Fuel and a Ceramic Particle Filter on Diesel Exhaust Particle Size Distributions,” SAE Technical Paper No. 920566.
Opris, C. N. , Gratz, L. D. , Bagley, S. T. , Baumgard, K. J. , Leddy, D. G. , and Johnson, J. H. , 1993, “The Effects of Fuel Sulfur Concentration on Regulated and Unregulated Heavy-Duty Diesel Emissions,” SAE Technical Paper No. 930730.
Godlee, F. , 1991, “Air Pollution—II: Road Traffic and Modern Industry,” BMJ, 303(6816), pp. 1539–1543.
Agarwal, A. K. , Gupta, T. , Shukla, P. C. , and Dhar, A. , 2015, “Particulate Emissions From Biodiesel Fuelled CI Engines,” Energy Convers. Manage., 94, pp. 311–330. [CrossRef]
Gupta, T. , Kothari, A. , Srivastava, D. K. , and Agarwal, A. K. , 2010, “Measurement of Number and Size Distribution of Particles Emitted From a Mid-Sized Transportation Multipoint Port Fuel Injection Gasoline Engine,” Fuel, 89(9), pp. 2230–2233. [CrossRef]
Dolan, D. F. , Kittelson, D. B. , and Pui, D. Y. H. , 1980, “Diesel Exhaust Particle Size Distribution Measurement Techniques,” SAE Technical Paper No. 800187.
Vuk, C. T. , Jones, M. A. , and Johnson, J. H. , 1976, “The Measurement and Analysis of the Physical Character of Diesel Particulate Emissions,” SAE Trans., 85(1), pp. 556–597. https://www.jstor.org/stable/44644058
Agarwal, J. K. , and Sem, G. J. , 1980, “Continuous Flow, Single-Particle-Counting Condensation Nucleus Counter,” J. Aerosol Sci., 11(4), pp. 343–357. [CrossRef]
Agarwal, A. K. , Gupta, T. , and Kothari, A. , 2011, “Particulate Emissions From Biodiesel Vs Diesel Fuelled Compression Ignition Engine,” Renewable Sustainable Energy Rev., 15(6), pp. 3278–3300. [CrossRef]
Jung, H. , Kittelson, D. B. , and Zachariah, M. R. , 2006, “Characteristics of SME Biodiesel-Fueled Diesel Particle Emissions and the Kinetics of Oxidation,” Environ. Sci. Technol., 40(16), pp. 4949–4955. [CrossRef] [PubMed]
Puzun, A. , Wanchen, S. , Guoliang, L. , Manzhi, T. , Chunjie, L. , and Shibao, C. , 2011, “Characteristics of Particle Size Distributions About Emissions in a Common-Rail Diesel Engine With Biodiesel Blends,” Procedia Environ. Sci., 11, pp. 1371–1378. [CrossRef]
Shukla, P. C. , Gupta, T. , Labhsetwar, N. K. , and Agarwal, A. K. , 2016, “Development of Low Cost Mixed Metal Oxide Based Diesel Oxidation Catalysts and Their Comparative Performance Evaluation,” RSC Adv., 6(61), pp. 55884–55893. [CrossRef]
Agarwal, A. K. , Dhar, A. , Srivastava, D. K. , Maurya, R. K. , and Singh, A. P. , 2013, “Effect of Fuel Injection Pressure on Diesel Particulate Size and Number Distribution in a CRDI Single Cylinder Research Engine,” Fuel, 107, pp. 84–89. [CrossRef]
Ravindra, K. , Sokhi, R. , and Van Grieken, R. , 2008, “Atmospheric Polycyclic Aromatic Hydrocarbons: Source Attribution, Emission Factors and Regulation,” Atmos. Environ., 42(13), pp. 2895–2921. [CrossRef]
Shukla, P. C. , Gupta, T. , and Agarwal, A. K. , 2014, “A Comparative Morphological Study of Primary and Aged Particles Emitted From a Biodiesel (B20) Vis-à-Vis Diesel Fuelled CRDI Engine,” Aerosol. Air Qual. Res., 14, pp. 934–942. [CrossRef]
Zielinska, B. , Goliff, W. , McDaniel, M. , Cahill, T. , Kittelson, D. , and Watts, W. , 2003, “Chemical Analyses of Collected Diesel Particulate Matter Samples in the E-43 Project,” National Renewable Energy Lab, Golden, CO.
Kweon, C. B. , Okada, S. , Foster, D. E. , Bae, M.-S. , and Schauer, J. J. , 2003, “Effect of Engine Operating Conditions on Particle-Phase Organic Compounds in Engine Exhaust of a Heavy-Duty Direct-Injection (DI) Diesel Engine,” SAE Technical Paper No. 2003-01-0342.
Gangwar, J. N. , Gupta, T. , and Agarwal, A. K. , 2012, “Composition and Comparative Toxicity of Particulate Matter Emitted From a Diesel and Biodiesel Fuelled CRDI Engine,” Atmos. Environ., 46, pp. 472–481. [CrossRef]
Agarwal, A. K. , Gupta, T. , and Kothari, A. , 2010, “Toxic Potential Evaluation of Particulate Matter Emitted From a Constant Speed Compression Ignition Engine: A Comparison Between Straight Vegetable Oil and Mineral Diesel,” Aerosol. Sci. Technol., 44(9), pp. 724–733. [CrossRef]
Macor, A. , Avella, F. , and Faedo, D. , 2011, “Effects of 30% v/v Biodiesel/Diesel Fuel Blend on Regulated and Unregulated Pollutant Emissions From Diesel Engines,” Appl. Energy, 88(12), pp. 4989–5001. [CrossRef]
Sharp, C. A. , Howell, S. A. , and Jobe, J. , 2000, “The Effect of Biodiesel Fuels on Transient Emissions From Modern Diesel Engines, Part I Regulated Emissions and Performance,” SAE Technical Paper No. 2000-01-1967.
Cheung, C. S. , Di, Y. , and Huang, Z. , 2008, “Experimental Investigation of Regulated and Unregulated Emissions From a Diesel Engine Fueled With Ultralow-Sulfur Diesel Fuel Blended With Ethanol and Dodecanol,” Atmos. Environ., 42(39), pp. 8843–8851. [CrossRef]
Cheung, C. S. , Zhu, L. , and Huang, Z. , 2009, “Regulated and Unregulated Emissions From a Diesel Engine Fueled With Biodiesel and Biodiesel Blended With Methanol,” Atmos. Environ., 43(32), pp. 4865–4872. [CrossRef]
McDonald, J. D. , Barr, E. B. , White, R. K. , Chow, J. C. , Schauer, J. J. , Zielinska, B. , and Grosjean, E. , 2004, “Generation and Characterization of Four Dilutions of Diesel Engine Exhaust for a Subchronic Inhalation Study,” Environ. Sci. Technol., 38(9), pp. 2513–2522. [CrossRef] [PubMed]
Schauer, J. J. , Kleeman, M. J. , Cass, G. R. , and Simoneit, B. R. , 1999, “Measurement of Emissions From Air Pollution Sources: C1 through C30 Organic Compounds From Medium Duty Diesel Trucks,” Environ. Sci. Technol., 33(10), pp. 1578–1587. [CrossRef]
Schauer, J. J. , Kleeman, M. J. , Cass, G. R. , and Simoneit, B. R. , 2002, “Measurement of Emissions From Air Pollution Sources. 5. C1− C32 Organic Compounds From Gasoline-Powered Motor Vehicles,” Environ. Sci. Technol., 36(6), pp. 1169–1180. [CrossRef] [PubMed]
Grosjean, D. , Grosjean, E. , and Gertler, A. W. , 2001, “On-Road Emissions of Carbonyls From Light-Duty and Heavy-Duty Vehicles,” Environ. Sci. Technol., 35(1), pp. 45–53. [CrossRef] [PubMed]
Pang, X. , Shi, X. , Mu, Y. , He, H. , Shuai, S. , Chen, H. , and Li, R. , 2006, “Characteristics of Carbonyl Compounds Emission From a Diesel-Engine Using Biodiesel–Ethanol–Diesel as Fuel,” Atmos. Environ., 40(36), pp. 7057–7065. [CrossRef]
He, C. , Ge, Y. , Tan, J. , You, K. , Han, X. , Wang, J. , You, Q. , and Shah, A. N. , 2009, “Comparison of Carbonyl Compounds Emissions From Diesel Engine Fueled With Biodiesel and Diesel,” Atmos. Environ., 43(24), pp. 3657–3661. [CrossRef]
Karavalakis, G. , Stournas, S. , and Bakeas, E. , 2009, “Light Vehicle Regulated and Unregulated Emissions From Different Biodiesels,” Sci. Total Environ., 407(10), pp. 3338–3346. [CrossRef] [PubMed]
Fontaras, G. , Karavalakis, G. , Kousoulidou, M. , Ntziachristos, L. , Bakeas, E. , Stournas, S. , and Samaras, Z. , 2010, “Effects of Low Concentration Biodiesel Blends Application on Modern Passenger Cars—Part 2: Impact on Carbonyl Compound Emissions,” Environ. Pollut., 158(7), pp. 2496–2503. [CrossRef] [PubMed]
Magara-Gomez, K. T. , Olson, M. R. , Okuda, T. , Walz, K. A. , and Schauer, J. J. , 2012, “Sensitivity of Hazardous Air Pollutant Emissions to the Combustion of Blends of Petroleum Diesel and Biodiesel Fuel,” Atmos. Environ., 50, pp. 307–313. [CrossRef]
Ho, S. S. H. , Ho, K. F. , Lee, S. C. , Cheng, Y. , Yu, J. Z. , Lam, K. M. , Feng, N. S. Y. , and Huang, Y. , 2012, “Carbonyl Emissions From Vehicular Exhausts Sources in Hong Kong,” J. Air Waste Manage. Assoc., 62(2), pp. 221–234. [CrossRef]
Di, Y. , Cheung, C. S. , and Huang, Z. , 2009, “Experimental Investigation on Regulated and Unregulated Emissions of a Diesel Engine Fueled With Ultra-Low Sulfur Diesel Fuel Blended With Biodiesel From Waste Cooking Oil,” Sci. Total Environ., 407(2), pp. 835–846. [CrossRef] [PubMed]
Takada, K. , Yoshimura, F. , Ohga, Y. , Kusaka, J. , and Daisho, Y. , 2003, “Experimental Study on Unregulated Emission Characteristics of Turbocharged DI Diesel Engine With Common Rail Fuel Injection System,” SAE Paper No. 2003-01-3158.
Ballesteros, R. , Hernandez, J. J. , Lyons, L. L. , Cabanas, B. , and Tapia, A. , 2008, “Speciation of the Semivolatile Hydrocarbon Engine Emissions From Sunflower Biodiesel,” Fuel, 87(10-11), pp. 1835–1843. [CrossRef]
Correa, S. M. , and Arbilla, G. , 2008, “Carbonyl Emissions in Diesel and Biodiesel Exhaust,” Atmos. Environ., 42(4), pp. 769–775. [CrossRef]
Liu, Y.-Y. , Lin, T. C. , Wang, Y. J. , and Ho, W. L. , 2009, “Carbonyl Compounds and Toxicity Assessments of Emissions From a Diesel Engine Running on Biodiesels,” J. Air Waste Manage. Assoc., 59(2), pp. 163–171. [CrossRef]
Xue, J. , Grift, T. E. , and Hansen, A. C. , 2011, “Effect of Biodiesel on Engine Performances and Emissions,” Renewable Sustainable Energy Rev., 15(2), pp. 1098–1116. [CrossRef]
Lea-Langton, A. R. , Li, H. , and Andrews, G. E. , 2008, “Comparison of Particulate PAH Emissions for Diesel, Biodiesel and Cooking Oil Using a Heavy Duty DI Diesel Engine,” SAE Paper No. 2008-01-1811.
Zielinska, B. , 2005, “Atmospheric Transformation of Diesel Emissions,” Exp. Toxicol. Pathol., 57, pp. 31–42. [CrossRef] [PubMed]
Karavalakis, G. , Stournas, S. , and Bakeas, E. , 2009, “Effects of Diesel/Biodiesel Blends on Regulated and Unregulated Pollutants From a Passenger Vehicle Operated Over the European and the Athens Driving Cycles,” Atmos. Environ., 43(10), pp. 1745–1752. [CrossRef]
Pan, J. , Quarderer, S. , Smeal, T. , and Sharp, C. , 2000, “Comparison of PAH and Nitro-PAH Emissions Among Standard Diesel Fuel, Biodiesel Fuel, and Their Blend on Diesel Engines,” 48th ASMS Conference on Mass Spectrometry and Allied Topics, Long Beach, CA, June 11–15. http://biodiesel.org/reports/20000601_tra-053.pdf
Kittelson, D. B. , 1985, “Measurements of PAH in the Cylinders of an Operating Diesel Engine,” Environmental Protection Agency, Washington, DC, Report No. 600/D-85/012.
National Research Council, 1992, Automotive Fuel Economy: How Far Can We Go? The National Academies Press, Washington, DC.
Jensen, T. E. , and Hites, R. A. , 1983, “Aromatic Diesel Emissions as a Function of Engine Conditions,” Anal. Chem., 55(4), pp. 594–599. [CrossRef]
Barbella, R. , Bertoli, C. , Ciajolo, A. , and D'anna, A. , 1988, “Soot and Unburnt Liquid Hydrocarbon Emissions From Diesel Engines,” Combust. Sci. Technol., 59(1–3), pp. 183–198. [CrossRef]
Coniglio, L. , Bennadji, H. , Glaude, P. A. , Herbinet, O. , and Billaud, F. , 2013, “Combustion Chemical Kinetics of Biodiesel and Related Compounds (Methyl and Ethyl Esters): Experiments and Modeling–Advances and Future Refinements,” Prog. Energy Combust. Sci., 39(4), pp. 340–382. [CrossRef]
Lai, J. Y. , Lin, K. C. , and Violi, A. , 2011, “Biodiesel Combustion: Advances in Chemical Kinetic Modelling,” Prog. Energy Combust. Sci., 37(1), pp. 1–14. [CrossRef]
Patterson, M. A. , Kong, S. C. , Hampson, G. J. , and Reitz, R. D. , 1994, “Modeling the Effects of Fuel Injection Characteristics on Diesel Engine Soot and NOx Emissions,” SAE Trans., 103(3), pp. 836–852. https://www.jstor.org/stable/44632839
Kong, S. C. , Han, Z. , and Reitz, R. D. , 1995, “The Development and Application of a Diesel Ignition and Combustion Model for Multidimensional Engine Simulation,” SAE Trans., 104(3), pp. 502–518. https://www.jstor.org/stable/44633235
Ra, Y. , Reitz, R. D. , McFarlane, J. , and Daw, C. S. , 2009, “Effects of Fuel Physical Properties on Diesel Engine Combustion Using Diesel and Bio-Diesel Fuels,” SAE Int. J. Fuels Lubr., 1(1), pp. 703–718. https://www.jstor.org/stable/26272042
Bajpai, D. , and Tyagi, V. K. , 2006, “Biodiesel: Source, Production, Composition, Properties and Its Benefits,” J. OLEo Sci., 55(10), pp. 487–502. [CrossRef]
Yuan, W. , Hansen, A. C. , and Zhang, Q. , 2003, “Predicting the Physical Properties of Biodiesel for Combustion Modelling,” Trans. ASAE, 46(6), pp. 1487–1493.
Reid, R. C. , Prausnitz, J. M. , and Poling, B. E. , 1987, The Properties of Gases and Liquids, McGraw-Hill, New York.
Chakravarthy, K. , McFarlane, J. , Daw, S. , Ra, Y. , Reitz, R. D. , and Griffin, J. , 2007, “Physical Properties of Bio-Diesel and Implications for Use of Bio-Diesel in Diesel Engines,” SAE Trans., 116(4), pp. 885–895. https://www.jstor.org/stable/44650925
Ismail, H. M. , Ng, H. K. , Cheng, X. , Gan, S. , Lucchini, T. , and D'Errico, G. , 2012, “Development of Thermophysical and Transport Properties for the Cfd Simulations of in-Cylinder Biodiesel Spray Combustion,” Energy Fuels., 26(8), pp. 4857–4870. [CrossRef]
Ra, Y. , and Reitz, R. D. , 2009, “A Vaporization Model for Discrete Multi-Component Fuel Sprays,” Int. J. Multiphase Flow, 35(2), pp. 101–117. [CrossRef]
Ra, Y. , and Reitz, R. D. , 2011, “A Combustion Model for IC Engine Combustion Simulations With Multi-Component Fuels,” Combust. Flame, 158(1), pp. 69–90. [CrossRef]
Brakora, J. L. , Ra, Y. , and Reitz, R. D. , 2011, “Combustion Model for Biodiesel-Fueled Engine Simulations Using Realistic Chemistry and Physical Properties,” SAE Int. J. Engines, 4(1), pp. 931–947. [CrossRef]
Higgins, B. S. , Mueller, C. J. , and Siebers, D. L. , 1999, “Measurements of Fuel Effects on Liquid-Phase Penetration in DI Sprays,” SAE Technical Paper No. 1999-01-0519.
Curran, H. J. , Gaffuri, P. , Pitz, W. J. , and Westbrook, C. K. , 1998, “A Comprehensive Modeling Study of n-Heptane Oxidation,” Combust. Flame, 114(1–2), pp. 149–177. [CrossRef]
Patel, A. , Kong, S. C. , and Reitz, R. D. , 2004, “Development and Validation of a Reduced Reaction Mechanism for HCCI Engine Simulations,” SAE Technical Paper No. 2004- 01-0558.
Fisher, E. M. , Pitz, W. J. , Curran, H. J. , and Westbrook, C. K. , 2000, “Detailed Chemical Kinetic Mechanisms for Combustion of Oxygenated Fuels,” Proc. Combust. Inst., 28(2), pp. 1579–1586. [CrossRef]
Golovitchev, V. I. , and Yang, J. , 2009, “Construction of Combustion Models for Rapeseed Methyl Ester Bio-Diesel Fuel for Internal Combustion Engine Applications,” Biotechnol. Adv., 27(5), pp. 641–655. [CrossRef] [PubMed]
Brakora, J. L. , Ra, Y. , Reitz, R. D. , McFarlane, J. , and Daw, C. S. , 2009, “Development and Validation of a Reduced Reaction Mechanism for Biodiesel-Fueled Engine Simulations,” SAE Int. J. Fuels Lubr., 1(1), pp. 675–702. [CrossRef]
Um, S. , and Park, S. W. , 2010, “Modeling Effect of the Biodiesel Mixing Ratio on Combustion and Emission Characteristics Using a Reduced Mechanism of Methyl Butanoate,” Fuel, 89(7), pp. 1415–1421. [CrossRef]
Herbinet, O. , Pitz, W. J. , and Westbrook, C. K. , 2010, “Detailed Chemical Kinetic Mechanism for the Oxidation of Biodiesel Fuels Blend Surrogate,” Combust. Flame, 157(5), pp. 893–908. [CrossRef]
Seshadri, K. , Lu, T. , Herbinet, O. , Humer, S. , Niemann, U. , Pitz, W. J. , Seiser, R. , and Law, C. K. , 2009, “Experimental and Kinetic Modeling Study of Extinction and Ignition of Methyl Decanoate in Laminar Non-Premixed Flows,” Proc. Combust. Inst., 32(1), pp. 1067–1074. [CrossRef]
Herbinet, O. , Pitz, W. J. , and Westbrook, C. K. , 2008, “Detailed Chemical Kinetic Oxidation Mechanism for a Biodiesel Surrogate,” Combust. Flame, 154(3), pp. 507–528. [CrossRef]
Luo, Z. , Lu, T. , Maciaszek, M. J. , Som, S. , and Longman, D. E. , 2010, “A Reduced Mechanism for High-Temperature Oxidation of Biodiesel Surrogates,” Energy Fuels, 24(12), pp. 6283–6293. [CrossRef]
Luo, Z. , Plomer, M. , Lu, T. , Som, S. , Longman, D. E. , Sarathy, S. M. , and Pitz, W. J. , 2012, “A Reduced Mechanism for Biodiesel Surrogates for Compression Ignition Engine Applications,” Fuel, 99, pp. 143–153. [CrossRef]
Luo, Z. , Plomer, M. , Lu, T. , Som, S. , and Longman, D. E. , 2012, “A Reduced Mechanism for Biodiesel Surrogates With Low Temperature Chemistry for Compression Ignition Engine Applications,” Combust. Theory Modell., 16(2), pp. 369–385. [CrossRef]
Brakora, J. L. , 2012, “A Comprehensive Combustion Model for Biodiesel-Fueled Engine Simulations,” Ph.D. thesis, The University of Wisconsin–Madison, Ann Arbor, MI. https://depot.library.wisc.edu/repository/fedora/1711.dl:W53PJNA3KHX668V/datastreams/REF/content
Brakora, J. , and Reitz, R. D. , 2013, “A Comprehensive Combustion Model for Biodiesel-Fueled Engine Simulations,” SAE Technical Paper No. 2013-01-1099.


Grahic Jump Location
Fig. 1

Relationship between fuel density and fuel temperature [2526]

Grahic Jump Location
Fig. 2

Comparison of CN of biodiesels vis-a-vis mineral diesel [15,30,44,66,67,70]. (Soy: soybean, Rape: rapeseed, Sunf: sunflower, Palm: palm, Jatr: jatropha, Kara: karanja, Tall: tallow, and B20: 20% v/v biodiesel blend).

Grahic Jump Location
Fig. 3

Comparison of LHV of biodiesels and mineral diesel [42,44,6870,73,74,77,78,8082] (Soy: soybean, Rape: rapeseed, Sunf: sunflower, Palm: palm, Jatr: jatropha, Kara: karanja, Tall: tallow, and B20: 20% biodiesel blend)

Grahic Jump Location
Fig. 4

Comparison of iodine values of various biodiesels [14,75,83] (Btal: beef tallow, Was: waste cooking oil, Jat: jatropha, Cot: cotton seed, Rap: rapeseed, Soy: soybean, and Sun: sunflower)

Grahic Jump Location
Fig. 5

Flow chart for fuel injection rate analysis [85]

Grahic Jump Location
Fig. 6

Schematic of the Bosch rate of injection meter [73]

Grahic Jump Location
Fig. 7

Comparison of volumetric injection rate of mineral diesel and biodiesel (Pinj = 60 MPa, 80 MPa, Pamb = 4.0 MPa, and teng = 1.2 ms) [85]

Grahic Jump Location
Fig. 8

Needle-lift, needle speed, exit velocity, and spray width of mineral diesel and biodiesel through an entire injection process (Pinj = 150 MPa, Pamb = 0.1 MPa, and Tamb = 300 K) [90]

Grahic Jump Location
Fig. 9:

Temporal spray evolution process and velocity distribution of ambient gas around the fuel spray [98]

Grahic Jump Location
Fig. 10

Comparison of experimental and numerical results for mineral diesel and biodiesel sprays (teng = 1.2 ms and Tf = 293 K) [85]: (a) Pinj = 60 MPa and (b) Pinj = 80 MPa

Grahic Jump Location
Fig. 11

Near-exit flow morphology of biodiesel and mineral diesel during steady-state (Pinj = 150 MPa, Pamb = 0.1 MPa, and Tamb = 300 K) [90]

Grahic Jump Location
Fig. 12

Variation of SMD for mineral diesel and biodiesel at different FIP and nozzle hole diameters (Pinj = 100, 200, and 300 MPa; do = 0.08 and 0.16 mm) [98]

Grahic Jump Location
Fig. 13

Mean droplet size distribution of biodiesel-blended fuels (Pinj = 60 MPa) [53]

Grahic Jump Location
Fig. 14

Axial velocity of mineral diesel and biodiesel sprays at different FIPs [90]

Grahic Jump Location
Fig. 15

Spatial and time-resolved combustion endoscopy images of biodiesel blends and diesel at 50% load at various crank angles in an engine cycle [113]

Grahic Jump Location
Fig. 16

Effect of FIP and SoI timing on cylinder pressure and HRR of biodiesel blends vis-à-vis mineral diesel [70]

Grahic Jump Location
Fig. 17

Effect of Karanja biodiesel blend concentration on engine brake torque [128]

Grahic Jump Location
Fig. 18

Effect of FIP and SoI timings on BTE of biodiesel blends vis-à-vis mineral diesel [70]

Grahic Jump Location
Fig. 19

Schematic showing possible pathways for organic compounds present in the fuels

Grahic Jump Location
Fig. 20

Classical flow-chart of soot formation steps [164]

Grahic Jump Location
Fig. 21

Typical composition of diesel particulates

Grahic Jump Location
Fig. 22

Total toxic equivalent potential of PAHs emitted by mineral diesel and biodiesel (B20) fueled engine particulates (Primary and secondary) [169]

Grahic Jump Location
Fig. 23

Experimental and numerical axial penetration length for (a) PME vapor and liquid and (b) PME, CME, SME, and mineral diesel in liquid phase [229]

Grahic Jump Location
Fig. 24

Distillation curve using five-component fuel simulation for different commercial biodiesels [232]

Grahic Jump Location
Fig. 25

Liquid spray penetration comparisons using original and improved KH-RT spray constants for biodiesel [233]

Grahic Jump Location
Fig. 26

Temperature profiles at different initial temperatures using 115-species skeletal mechanism and detailed mechanism, respectively [245]

Grahic Jump Location
Fig. 27

Key pathway in the MD+MD9D mechanism [246]

Grahic Jump Location
Fig. 28

Numerical composition of BD20 and the species information exchange between physical and chemistry models [239]

Grahic Jump Location
Fig. 29

Fuel consumption characteristics under different (a) mixing ratios of biodiesel and (b) injection timings [239]

Grahic Jump Location
Fig. 30

Combustion pressure and heat release rate using (a) MB/n-heptane mechanism and (b) MD/MD9D/n-heptane mechanism with comparison to experimental results [232]

Grahic Jump Location
Fig. 31

Combustion pressure and heat release rate for (a) SME20 and (b) PME20 biodiesel blends [247]

Grahic Jump Location
Fig. 32

Nitrogen oxides (NOx) concentration for MB/n-heptane (green triangle) and MD/MD9D/n-heptane (red circle) mechanisms at various engine loads [247]

Grahic Jump Location
Fig. 33

Emissions concentration for (a) SME20 and (b) PME20 under LTC combustion conditions [247]



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In