0
Research Papers: Fuel Combustion

Understanding the Effect of Oxygenated Additives on Combustion Characteristics of Gasoline

[+] Author and Article Information
Shrabanti Roy, Saeid Zare, Omid Askari

Department of Mechanical Engineering,
Mississippi State University,
Starkville, MS 39762

Contributed by the Advanced Energy Systems Division of ASME for publication in the JOURNAL OF ENERGY RESOURCES TECHNOLOGY. Manuscript received August 10, 2018; final manuscript received August 22, 2018; published online September 26, 2018. Editor: Hameed Metghalchi.

J. Energy Resour. Technol 141(2), 022205 (Sep 26, 2018) (10 pages) Paper No: JERT-18-1622; doi: 10.1115/1.4041316 History: Received August 10, 2018; Revised August 22, 2018

Laminar burning speed and ignition delay time behavior of iso-octane at the presence of two different biofuels, ethanol and 2,5 dimethyl furan (DMF), was studied in this work. Biofuels are considered as a better alternative source of fossil fuels. There is a potentiality that combustion characteristics of iso-octane can be improved using biofuels as an oxygenated additive. In this study, three different blending ratios of 5%, 25%, and 50% of ethanol/iso-octane and DMF/iso-octane were investigated. For laminar burning speed calculation, equivalence ratio of 0.6–1.4 was considered. Ignition delay time was measured under temperature ranges from 650 K to 1100 K. Two different mechanisms were considered in numerical calculation. These mechanisms were validated by comparing the results of pure fuels with wide range of experimental and numerical data. The characteristic change of iso-octane with the presence of additives was observed by comparing the results with pure fuel. Significant change was observed on behavior of iso-octane at 50% blending ratio. A comparison was also done on the effect of two different additives. It has found that addition of DMF brings significant changes on iso-octane characteristics comparing to ethanol.

Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Mehl, M. , Pitz, W. J. , Westbrook, C. K. , and Curran, H. J. , 2011, “ Kinetic Modeling of Gasoline Surrogate Components and Mixtures Under Engine Conditions,” Proc. Combust. Inst., 33(1), pp. 193–200. [CrossRef]
Somers, K. P. , Simmie, J. M. , Gillespie, F. , Conroy, C. , Black, G. , Metcalfe, W. K. , Battin-Leclerc, F. , Dirrenberger, P. , Herbinet, O. , Glaude, P. A. , Dagaut, P. , Togbé, C. , Yasunaga, K. , Fernandes, R. X. , Lee, C. , Tripathi, R. , and Curran, H. J. , 2013, “ A Comprehensive Experimental and Detailed Chemical Kinetic Modelling Study of 2,5-Dimethylfuran Pyrolysis and Oxidation,” Combust. Flame, 160(11), pp. 2291–2318. [CrossRef]
Yu, G. , Askari, O. , Hadi, F. , Wang, Z. , Metghalchi, H. , Kannaiyan, K. , and Sadr, R. , 2017, “ Theoretical Prediction of Laminar Burning Speed and Ignition Delay Time of Gas-to-Liquid Fuel,” ASME J. Energy Resour. Technol., 139(2), p. 022202. [CrossRef]
Askari, O. , Elia, M. , Ferrari, M. , and Metghalchi, H. , 2017, “ Cell Formation Effects on the Burning Speeds and Flame Front Area of Synthetic Gas at High Pressures and Temperatures,” Appl. Energy, 189, pp. 568–577. [CrossRef]
Askari, O. , Wang, Z. , Vien, K. , Sirio, M. , and Metghalchi, H. , 2017, “ On the Flame Stability and Laminar Burning Speeds of Syngas/O2/He Premixed Flame,” Fuel, 190, pp. 90–103. [CrossRef]
Askari, O. , Elia, M. , Ferrari, M. , and Metghalchi, H. , 2017, “ Auto-Ignition Characteristics Study of Gas-to-Liquid Fuel at High Pressures and Low Temperatures,” ASME J. Energy Resour. Technol., 139(1), p. 012204. [CrossRef]
Askari, O. , Vien, K. , Wang, Z. , Sirio, M. , and Metghalchi, H. , 2016, “ Exhaust Gas Recirculation Effects on Flame Structure and Laminar Burning Speeds of H2/CO/Air Flames at High Pressures and Temperatures,” Appl. Energy, 179, pp. 451–462. [CrossRef]
Askari, O. , Moghaddas, A. , Alholm, A. , Vien, K. , Alhazmi, B. , and Metghalchi, H. , 2016, “ Laminar Burning Speed Measurement and Flame Instability Study of H2/CO/Air Mixtures at High Temperatures and Pressures Using a Novel Multi-Shell Model,” Combust. Flame, 168, pp. 20–31. [CrossRef]
Rokni, E. , Moghaddas, A. , Askari, O. , and Metghalchi, H. , 2014, “ Measurement of Laminar Burning Speeds and Investigation of Flame Stability of Acetylene  (C2H2)/Air Mixtures,” ASME J. Energy Resour. Technol., 137(1), p.  012204. [CrossRef]
Katre, V. , and Bhele, S. K. , 2013, “ A Review of Laminar Burning Velocity of Gases and Liquid Fuels,” Int. J. Comput. Eng. Res., 3(7), pp. 33–38. http://www.ijceronline.com/papers/Vol3_issue7/Part-2/E0372033038.pdf
Eldeeb, M. A. , and Akih-Kumgeh, B. , 2015, “ Investigation of 2,5-Dimethyl Furan and Iso-Octane Ignition,” Combust. Flame, 162(6), pp. 2454–2465. [CrossRef]
Vancoillie, J. , Demuynck, J. , Galle, J. , Verhelst, S. , and Van Oijen, J. A. , 2012, “ A Laminar Burning Velocity and Flame Thickness Correlation for Ethanol-Air Mixtures Valid at Spark-Ignition Engine Conditions,” Fuel, 102, pp. 460–469. [CrossRef]
Rau, F. , Hartl, S. , Voss, S. , Still, M. , Hasse, C. , and Trimis, D. , 2015, “ Laminar Burning Velocity Measurements Using the Heat Flux Method and Numerical Predictions of Iso-Octane/Ethanol Blends for Different Preheat Temperatures,” Fuel, 140, pp. 10–16. [CrossRef]
Ma, X. , Jiang, C. , Xu, H. , Ding, H. , and Shuai, S. , 2014, “ Laminar Burning Characteristics of 2-Methylfuran and Isooctane Blend Fuels,” Fuel, 116, pp. 281–291. [CrossRef]
Van Lipzig, J. P. J. , Nilsson, E. J. K. , De Goey, L. P. H. , and Konnov, A. A. , 2011, “ Laminar Burning Velocities of n-Heptane, Iso-Octane, Ethanol and Their Binary and Tertiary Mixtures,” Fuel, 90(8), pp. 2773–2781. [CrossRef]
Wu, X. , Li, Q. , Fu, J. , Tang, C. , Huang, Z. , Daniel, R. , Tian, G. , and Xu, H. , 2012, “ Laminar Burning Characteristics of 2,5-Dimethylfuran and Iso-Octane Blend at Elevated Temperatures and Pressures,” Fuel, 95, pp. 234–240. [CrossRef]
Marinov, N. M. , 1999, “ A Detailed Chemical Kinetic Model for High Temperature Ethanol Oxidation,” J. Chem. Kinet., 31(3), pp. 183–220. [CrossRef]
Yu, G. , Askari, O. , and Metghalchi, H. , 2018, “ Theoretical Prediction of the Effect of Blending JP-8 With Syngas on the Ignition Delay Time and Laminar Burning Speed,” ASME J. Energy Resour. Technol., 140(1), p. 012204. [CrossRef]
Curran, H. J. , Gaffuri, P. , Pitz, W. J. , and Westbrook, C. K. , 2004, “ A Comprehensive Modeling Study of Hydrogen Oxidation,” Int. J. Chem. Kinet., 36(11), pp. 603–622. [CrossRef]
Fieweger, K. , Blumenthal, R. , and Adomeit, G. , 1997, “ Self-Ignition of SI Engine Model Fuels: A Shock Tube Investigation at High Pressure,” Combust. Flame, 109(4), pp. 599–619. [CrossRef]
Gauthier, B. M. , Davidson, D. F. , and Hanson, R. K. , 2004, “ Shock Tube Determination of Ignition Delay Times in Full-Blend and Surrogate Fuel Mixtures,” Combust. Flame, 139(4), pp. 300–311. [CrossRef]
Kumar, K. , Freeh, J. E. , Sung, C. J. , and Huang, Y. , 2007, “ Laminar Flame Speeds of Preheated iso-Octane/O2/N2 and n-Heptane/O2/N2 Mixtures,” J. Propul. Power, 23(2), pp. 428–436. [CrossRef]
Dirrenberger, P. , Glaude, P. A. , Bounaceur, R. , Le Gall, H. , Da Cruz, A. P. , Konnov, A. A. , and Battin-Leclerc, F. , 2014, “ Laminar Burning Velocity of Gasolines With Addition of Ethanol,” Fuel, 115, pp. 162–169. [CrossRef]
Andrae, J. C. G. , Björnbom, P. , Cracknell, R. F. , and Kalghatgi, G. T. , 2007, “ Autoignition of Toluene Reference Fuels at High Pressures Modeled With Detailed Chemical Kinetics,” Combust. Flame, 149(1–2), pp. 2–24. [CrossRef]
Kukkadapu, G. , Kumar, K. , Sung, C. J. , Mehl, M. , and Pitz, W. J. , 2013, “ Autoignition of Gasoline and Its Surrogates in a Rapid Compression Machine,” Proc. Combust. Inst., 34(1), pp. 345–352. [CrossRef]
Kukkadapu, G. , Kumar, K. , Sung, C. J. , Mehl, M. , and Pitz, W. J. , 2012, “ Experimental and Surrogate Modeling Study of Gasoline Ignition in a Rapid Compression Machine,” Combust. Flame, 159(10), pp. 3066–3078. [CrossRef]
Bradley, D. , Hicks, R. A. , Lawes, M. , Sheppard, C. G. W. , and Woolley, R. , 1998, “ The Measurement of Laminar Burning Velocities and Markstein Numbers for Iso-Octane-Air and Iso-Octane-n-Heptane-Air Mixtures at Elevated Temperatures and Pressures in an Explosion Bomb,” Combust. Flame, 115(1–2), pp. 126–144. [CrossRef]
Huang, Y. , Sung, C. J. , and Eng, J. A. , 2004, “ Laminar Flame Speeds of Primary Reference Fuels and Reformer Gas Mixtures,” Combust. Flame, 139(3), pp. 239–251. [CrossRef]
Seiser, R. , Pitsch, H. , Seshadri, K. , Pitz, W. J. , and Curran, H. J. , 2000, “ Extinction and Autoignition of n-Heptane in Counterflow Configuration,” Proc. Combust. Inst., 28(2), pp. 2029–2037. [CrossRef]
Jerzembeck, S. , Peters, N. , Pepiot-Desjardins, P. , and Pitsch, H. , 2009, “ Laminar Burning Velocities at High Pressure for Primary Reference Fuels and Gasoline: Experimental and Numerical Investigation,” Combust. Flame, 156(2), pp. 292–301. [CrossRef]
Cai, L. , and Pitsch, H. , 2015, “ Optimized Chemical Mechanism for Combustion of Gasoline Surrogate Fuels,” Combust. Flame, 162(5), pp. 1623–1637. [CrossRef]
Dunphy, M. P. , and Simmie, J. M. , 1991, “ High Temperature Oxidation of Ethanol—Part 1: Ignition Delays in Shock Waves,” Chem. Soc. Faraday Trans., 87(11), pp. 1691–1695. [CrossRef]
Dunphy, M. P. , and Simmie, J. M. , 1991, “ High Temperature Oxidation of Ethanol—Part 2: Kinetic Modelling,” Chem. Soc. Faraday Trans., 87(11), pp. 2549–2559. [CrossRef]
Vancoillie, J. , Christensen, M. , Nilsson, E. J. K. , Verhelst, S. , and Konnov, A. A. , 2012, “ Temperature Dependence of the Laminar Burning Velocity of Methanol Flames,” Energy Fuels, 26(3), pp. 1557–1564. [CrossRef]
Liao, S. Y. , Jiang, D. M. , Huang, Z. H. , Zeng, K. , and Cheng, Q. , 2007, “ Determination of the Laminar Burning Velocities for Mixtures of Ethanol and Air at Elevated Temperatures,” Appl. Therm. Eng., 27(2–3), pp. 374–380. [CrossRef]
Bradley, D. , Lawes, M. , and Mansour, M. S. , 2009, “ Explosion Bomb Measurements of Ethanol-Air Laminar Gaseous Flame Characteristics at Pressures Up to 1.4 MPa,” Combust. Flame, 156(7), pp. 1462–1470. [CrossRef]
Eisazadeh-Far, K. , Moghaddas, A. , Al-Mulki, J. , and Metghalchi, H. , 2011, “ Laminar Burning Speeds of Ethanol/Air/Diluent Mixtures,” Proc. Combust. Inst., 33(1), pp. 1021–1027. [CrossRef]
Egolfopoulos, F. N. , Du, D. X. , and Law, C. K. , 1992, “ A Study on Ethanol Oxidation Kinetics in Laminar Premixed Flames, Flow Reactors, and Shock Tubes,” Symp. Combust., 24(1), pp. 833–841. [CrossRef]
Wang, C. , Xu, H. , Daniel, R. , Ghafourian, A. , Herreros, J. M. , Shuai, S. , and Ma, X. , 2013, “ Combustion Characteristics and Emissions of 2-Methylfuran Compared to 2,5-Dimethylfuran, Gasoline and Ethanol in a DISI Engine,” Fuel, 103, pp. 200–211.
Yüksel, F. , and Yüksel, B. , 2004, “ The Use of Ethanol-Gasoline Blend as a Fuel in an SI Engine,” Renew. Energy, 29(7), pp. 1181–1191. [CrossRef]
Abdel-Rahman, A. A. , and Osman, M. M. , 1997, “ Experimental Investigation on Varying the Compression Ratio of SI Engine Working Under Different Ethanol—Gasoline Fuel Blends,” Int. J. Energy Res., 21(1), pp. 31–40. [CrossRef]
Metghalchi, M. , and Keck, J. C. , 1982, “ Burning Velocities of Mixtures of Air With Methanol, Isooctane, and Indolene at High Pressure and Temperature,” Combust. Flame, 48, pp. 191–210. [CrossRef]
Varea, E. , Modica, V. , Renou, B. , and Boukhalfa, A. M. , 2013, “ Pressure Effects on Laminar Burning Velocities and Markstein Lengths for Isooctane-Ethanol-Air Mixtures,” Proc. Combust. Inst., 34(1), pp. 735–744. [CrossRef]
Ra, Y. , and Reitz, R. D. , 2008, “ A Reduced Chemical Kinetic Model for IC Engine Combustion Simulations With Primary Reference Fuels,” Combust. Flame, 155(4), pp. 713–738. [CrossRef]
Masum, B. M. , Masjuki, H. H. , Kalam, M. A. , Rizwanul Fattah, I. M. M. , Palash, S. , and Abedin, M. J. , 2013, “ Effect of Ethanol-Gasoline Blend on NOx Emission in SI Engine,” Renewable Sustainable Energy Rev., 24, pp. 209–222. [CrossRef]
Gulder, O. , 1984, “ A Burning Velocity of Ethanol-Isooctane Blends,” Combust Flame, 56(3), pp. 261–268. [CrossRef]
Palmer, F. H. , 1986, “ Vehicle Performance of Gasoline Containing Oxygenates,” International Conference on Petroleum Based Fuels and Automotive Applications, London, UK, pp. 33–35.
Hsieh, W. D. , Chen, R. H. , Wu, T. L. , and Lin, T. H. , 2002, “ Engine Performance and Pollutant Emission of an SI Engine Using Ethanol-Gasoline Blended Fuels,” Atmos. Environ., 36(3), pp. 403–410. [CrossRef]
Song, C. L. , Zhou, Y. C. , Huang, R. J. , Wang, Y. Q. , Huang, Q. F. , and LüG, E. , 2007, “ Influence of Ethanol-Diesel Blended Fuels on Diesel Exhaust Emissions and Mutagenic and Genotoxic Activities of Particulate Extracts,” J. Hazard. Mater., 149(2), pp. 355–363. [CrossRef] [PubMed]
Najafi, G. , Ghobadian, B. , Tavakoli, T. , Buttsworth, D. R. , Yusaf, T. F. , and Faizollahnejad, M. , 2009, “ Performance and Exhaust Emissions of a Gasoline Engine With Ethanol Blended Gasoline Fuels Using Artificial Neural Network,” Appl. Energy, 86(5), pp. 630–639. [CrossRef]
Galbiati, M. A. , Cavigiolo, A. , Effuggi, A. , and Gelosa, D. R. , 2004, “ Mild Combustion for Fuel-Nox Reduction,” Combust. Sci. Technol., 176(7), pp. 1035–1054. [CrossRef]
Cancino, L. R. , Fikri, M. , Oliveira, A. A. M. , and Schulz, C. , 2011, “ Ignition Delay Times of Ethanol-Containing Multi-Component Gasoline Surrogates: Shock-Tube Experiments and Detailed Modeling,” Fuel, 90(3), pp. 1238–1244. [CrossRef]
Jing Zhong, B. D. Z. , 2012, “ Chemical Kinetic Mechanism of a Three-Component Fuel Composed of Iso-Octane/n-Heptane/Ethanol,” Combust. Sci. Technol., 185(4), pp. 627–644. [CrossRef]
Lifshitz, A. , Tamburu, C. , and Shashua, R. , 1997, “ Decomposition of 2-Methylfuran. Experimental and Modeling Study,” J. Phys. Chem. A, 101(6), pp. 1018–1029. [CrossRef]
Lifshitz, A. , Tamburu, C. , and Shashua, R. , 1998, “ Thermal Decomposition of 2,5-Dimethylfuran: Experimental Results and Computer Modeling,” J. Phys. Chem, 102(52), pp. 10655–10670. [CrossRef]
Tran, L. S. , Togbé, C. , Liu, D. , Felsmann, D. , Oßwald, P. , Glaude, P. A. , Fournet, R. , Sirjean, B. , Battin-Leclerc, F. , and Kohse-Höinghaus, K. , 2014, “ Combustion Chemistry and Flame Structure of Furan Group Biofuels Using Molecular-Beam Mass Spectrometry and Gas Chromatography—Part II: 2-Methylfuran,” Combust. Flame, 161(3), pp. 766–779. [CrossRef] [PubMed]
Liu, D. , Togbé, C. , Tran, L.-S , Felsmann, D. , Oßwalda, P. , Naua , P. , Koppmanna, J. , Lackner, A. , Glaude, P.-A. , Sirjean, B. , Fournet, R. , Battin-Leclerc, F. , and Kohse-Höinghaus, K. , 2014, “ Combustion Chemistry and Flame Structure of Furan Group Biofuels Using Molecular-Beam Mass Spectrometry and Gas Chromatography—Part I: Furan,” Combust. Flame, 161(3), pp. 748–765. [CrossRef] [PubMed]
Somers, K. P. , Simmie, J. M. , Gillespie, F. , Burke, U. , Connolly, J. , Metcalfe, W. K. , Battin-Leclerc, F. , Dirrenberger, P. , Herbinet, O. , Glaude, P. A. , and Curran, H. J. , 2013, “ A High Temperature and Atmospheric Pressure Experimental and Detailed Chemical Kinetic Modelling Study of 2-Methyl Furan Oxidation,” Proc. Combust. Inst., 34(1), pp. 225–232. [CrossRef] [PubMed]
Togbé, C. , Tran, L.-S. , Liu, D. , Felsmann, D. , Oßwalda, P. , Glaude, P.-A. , Sirjean, B. , Fournet, R. , Battin-Leclerc, F. , and Kohse-Höinghaus, K. , 2014, “ Combustion Chemistry and Flame Structure of Furan Group Biofuels Using Molecular-Beam Mass Spectrometry and Gas Chromatography—Part III: 2,5-Dimethylfuran,” Combust. Flame, 161(3), pp. 780–797. [CrossRef] [PubMed]
Wu, X. , Huang, Z. , Jin, C. , Wang, X. , Zheng, B. , Zhang, Y. , and Wei, L. , 2009, “ Measurements of Laminar Burning Velocities and Markstein Lengths of 2, 5 Dimethylfuran-air-Diluent Premixed Flames,” Energy Fuels, 23(9), pp. 4355–4362. [CrossRef]
Xu, N. , Wu, Y. , Tang, C. , Zhang, P. , He, X. , Wang, Z. , and Huang, Z. , 2016, “ Experimental Study of 2,5-Dimethylfuran and 2-Methylfuran in a Rapid Compression Machine: Comparison of the Ignition Delay Times and Reactivity at Low to Intermediate Temperature,” Combust. Flame, 168, pp. 216–227. [CrossRef]
Wu, X. , Huang, Z. , Wang, X. , Jin, C. , Tang, C. , Wei, L. , and Law, C. K. , 2011, “ Laminar Burning Velocities and Flame Instabilities of 2,5-Dimethylfuran-Air Mixtures at Elevated Pressures,” Combust. Flame, 158(3), pp. 539–546. [CrossRef]
Lifshitz, A. , Bidani, M. , and Bidani, S. , 1986, “ Thermal Reactions of Cyclic Ethers at High Temperatures—Part 3: Pyrolysis of Furan Behind Reflected Shocks,” J. Phys. Chem., 90(21), pp. 5373–5377. [CrossRef]
Sirjean, B. , Fournet, R. , Glaude, P.-A. , Battin-Leclerc, F. , Wang, W. , and Oehlschlaeger, M. A. , 2013, “ Shock Tube and Chemical Kinetic Modeling Study of the Oxidation of 2,5-Dimethylfuran,” J. Phys. Chem. A, 117(7), pp. 1371–1392. [CrossRef] [PubMed]
Tian, Z. , Yuan, T. , Fournet, R. , Glaude, P. A. , Sirjean, B. , Battin-Leclerc, F. , Zhang, K. , and Qi, F. , 2011, “ An Experimental and Kinetic Investigation of Premixed Furan/Oxygen/Argon Flames,” Combust. Flame, 158(4), pp. 756–773. [CrossRef] [PubMed]
Tran, L. S. , Wang, Z. , Carstensen, H. H. , Hemken, C. , Battin-Leclerc, F. , and Kohse-Höinghaus, K. , 2017, “ Comparative Experimental and Modeling Study of the Low- to Moderate-Temperature Oxidation Chemistry of 2,5-Dimethylfuran, 2-Methylfuran, and Furan,” Combust. Flame, 181, pp. 251–269. [CrossRef]
Xiao, M. , Changzhao, J. , and Hongming, X. , and Richardson, S. , 2012, “ In-Cylinder Optical Study on Combustion of DMF and DMF Fuel Blends,” SAE Technical Paper No. 2012-01-1235.
Tian, G. , Daniel, R. , Li, H. , Xu, H. , Shuai, S. , and Richards, P. , 2010, “ Laminar Burning Velocities of 2,5-Dimethylfuran Compared With Ethanol and Gasoline,” Energy Fuels, 24(7), pp. 3898–3905. [CrossRef]
Pan, M. , Shu, G. , Pan, J. , Wei, H. , Feng, D. , Guo, Y. , and Liang, Y. , 2014, “ Performance Comparison of 2-Methylfuran and Gasoline on a Spark-Ignition Engine With Cooled Exhaust Gas Recirculation,” Fuel, 132, pp. 36–43. [CrossRef]
Wei, H. , Feng, D. , Shu, G. , Pan, M. , Guo, Y. , Gao, D. , and Li, W. , 2014, “ Experimental Investigation on the Combustion and Emissions Characteristics of 2-Methylfuran Gasoline Blend Fuel in Spark-Ignition Engine,” Appl. Energy, 132, pp. 317–324. [CrossRef]
Rothamer, D. A. , and Jennings, J. H. , 2012, “ Study of the Knocking Propensity of 2,5-Dimethylfuran-Gasoline and Ethanol-Gasoline Blends,” Fuel, 98, pp. 203–212. [CrossRef]
Wei, H. , Gao, D. , Zhou, L. , Feng, D. , Chen, C. , and Pei, Z. , 2016, “ Experimental Analysis on Spray Development of 2-Methylfuran-Gasoline Blends Using Multi-Hole dI Injector,” Fuel, 164, pp. 245–253. [CrossRef]
Wu, X. , Daniel, R. , Tian, G. , Xu, H. , Huang, Z. , and Richardson, D. , 2011, “ Dual-Injection: The Flexible, bi-Fuel Concept for Spark-Ignition Engines Fuelled With Various Gasoline and Biofuel Blends,” Appl. Energy, 88(7), pp. 2305–2314. [CrossRef]
Lee, C. , Vranckx, S. , Heufer, K. A. , Khomik, S. V. , Uygun, Y. , Olivier, H. , and Fernandez, R. X. , 2012, “ On the Chemical Kinetics of Ethanol Oxidation: Shock Tube, Rapid Compression Machine and Detailed Modeling Study,” Z. Für Phys. Chem., 226(1), pp. 1–28. [CrossRef]
Ji, W. , Ren, Z. , and Law, C. K. , 2018, “ Evolution of Sensitivity Directions During Autoignition,” Proc. Combust. Inst. (in press). https://www.sciencedirect.com/science/article/pii/S1540748918304231

Figures

Grahic Jump Location
Fig. 1

Comparison of laminar burning speed of iso-octane/air at 358 K temperature and 1 atm pressure (bullets represent experimental data [1416,22,23,27]; dash line, numerical simulation [23]; and solid line for this work)

Grahic Jump Location
Fig. 2

Comparison of ignition delay time of iso-octane/air mixture at pressure of 40 atm and equivalence ratio of 1 (bullets represent experimental data [20,21,26]; dash line, numerical simulation [31]; and solid line for this work)

Grahic Jump Location
Fig. 3

Comparison of laminar burning speed of ethanol/air mixture at 358 K temperature and 1 atm pressure (bullets represent experimental data [23,27,35,37,46]; dash line, numerical simulation [23]; and solid line for this work)

Grahic Jump Location
Fig. 4

Comparison of ignition delay time of ethanol/O2/Ar mixture at pressure of 3.5 atm and equivalence ratio of 1 (bullet represents experimental data [32,33]; dash line, numerical simulation [17]; and solid line for this work)

Grahic Jump Location
Fig. 5

Comparison of laminar burning speed of DMF/O2/N2 at 393 K temperature and 1 atm pressure (bullets represent experimental data [16,68]; dash line, numerical simulation [2]; and solid line for this work)

Grahic Jump Location
Fig. 6

Comparison of ignition delay time of DMF/O2/N2 at pressure of 80 atm and equivalence ratio of 1 (bullets represent experimental data [16]; dash line, numerical simulation [16]; and solid line for this work)

Grahic Jump Location
Fig. 7

Sensitivity analysis on laminar burning speed of DMF/air at different equivalence ratios, 1 atm pressure and 393 K temperature

Grahic Jump Location
Fig. 8

Sensitivity analysis on temperature of ethanol with current mechanism [31] under experimental condition of 1.25% C2H5OH, 3.75% N2, and 95% Ar at different temperatures, 3.4 bar pressure and stoichiometric condition

Grahic Jump Location
Fig. 9

Sensitivity analysis on ignition delay time of ethanol with Marinov mechanism [17] under experimental condition of 1.25% C2H5OH, 3.75% N2, and 95% Ar at different temperatures, 3.4 bar pressure and stoichiometric condition

Grahic Jump Location
Fig. 10

Comparison of laminar burning speed of ethanol/iso-octane/air mixture at different ethanol parentages along with pure ethanol and pure iso-octane at pressure of 1 atm and temperature of 358 K for different equivalence ratios

Grahic Jump Location
Fig. 11

Comparison of ignition delay time of ethanol/iso-octane/air mixture at different ethanol parentages along with pure ethanol and pure iso-octane at pressure of 40 atm and equivalence ratio of 1

Grahic Jump Location
Fig. 12

(a) Laminar burning speed at different equivalence ratios and (b) change of laminar burning speed at different ethanol percentages

Grahic Jump Location
Fig. 13

(a) Ignition delay time at different temperatures and (b) change of ignition delay time at different ethanol percentages

Grahic Jump Location
Fig. 14

Comparison of laminar burning speed of DMF/iso-octane/air mixture at different DMF parentages along with pure DMF and pure iso-octane at pressure of 1 atm and temperature of 358 K for different equivalence ratios

Grahic Jump Location
Fig. 15

Comparison of ignition delay time of DMF/iso-octane/air mixture at different DMF parentages along with pure DMF and pure iso-octane at pressure of 40 atm and equivalence ratio of 1

Grahic Jump Location
Fig. 16

(a) Laminar burning speed at different equivalence ratios and (b) change of laminar burning speed at different DMF percentages

Grahic Jump Location
Fig. 17

(a) Ignition delay time at different temperatures and (b) change of Ignition delay time at different DMF percentages

Grahic Jump Location
Fig. 18

Comparison of laminar burning speed of 5%, 25%, and 50% of ethanol and DMF blend with iso-octane at different equivalence ratios

Grahic Jump Location
Fig. 19

Comparison of ignition delay time of 5%, 25%, and 50% ethanol and DMF blend with iso-octane at different temperatures

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In