0
Research Papers: Fuel Combustion

Experimental Study of Laminar Burning Speed for Premixed Biomass/Air Flame

[+] Author and Article Information
Ziwei Bai

Beijing Key Laboratory of Emission Surveillance
and Control for Thermal Power Generation,
North China Electric Power University,
Beijing 102206, China;
Department of Mechanical and Industrial
Engineering,
Northeastern University,
Boston, MA 02115

Ziyu Wang, Guangying Yu

Department of Mechanical and Industrial
Engineering,
Northeastern University,
Boston, MA 02115

Yongping Yang

Beijing Key Laboratory of Emission Surveillance
and Control for Thermal Power Generation,
North China Electric Power University,
Beijing 102206, China

Hameed Metghalchi

Department of Mechanical and
Industrial Engineering,
Northeastern University,
Boston, MA 02115

1Corresponding authors.

Contributed by the Advanced Energy Systems Division of ASME for publication in the JOURNAL OF ENERGY RESOURCES TECHNOLOGY. Manuscript received August 21, 2018; final manuscript received August 31, 2018; published online September 26, 2018. Special Editor: Reza Sheikhi.

J. Energy Resour. Technol 141(2), 022206 (Sep 26, 2018) (12 pages) Paper No: JERT-18-1642; doi: 10.1115/1.4041412 History: Received August 21, 2018; Revised August 31, 2018

Biomass has been considered as a valuable alternative fuel recently. A fundamental property of biomass/air flame, laminar burning speed, is measured in this research. Experiments have been made in a cylindrical combustion vessel with two end windows. Central ignition has been used to start the combustion process. A high-speed CMOS camera capable of taking pictures of 40,000 frames per second has been used to study morphology of flame front. Flames are initially smooth, and as pressure and flame radius increase, cracks and cells appear on the flame surface. In this paper, experimental results have only been reported for smooth flames. A multishell thermodynamic model to measure laminar burning speed of biomass/air mixture with varying CO2 concentrations (0%–60%), based on the pressure rise data collected from a cylindrical chamber during combustion, has been developed in this paper. Burning speed has been only reported for flame radii larger than 4 cm in radius in order to have negligible stretch effect. Power law correlations, to predict burning speed of biomass/air mixtures, based on the measured burning speeds, have been developed for a range of temperatures of 300–661 K, pressures of 0.5–6.9 atmospheres, equivalence ratios of 0.8–1.2, and CO2 concentrations 0%–60%. Moreover, the measured laminar burning speeds have been compared with simulation results using a one-dimensional steady-state laminar premixed flame program with GRI-Mech 3.0 mechanism and other available data from literatures. Comparison with existing data has been excellent.

Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Wilson, D. A. , and Lyons, K. M. , 2009, “ On Diluted-Fuel Combustion Issues in Burning Biogas Surrogates,” ASME J. Energy Resour. Technol., 131(4), p. 041802. [CrossRef]
Arthur, R. , Baidoo, M. F. , and Antwi, E. , 2011, “ Biogas as a Potential Renewable Energy Source: A Ghanaian Case Study,” Renewable Energy, 36(5), pp. 1510–1516. [CrossRef]
Taylor, M. , Daniel, K. , Ilas, A. , et al. .2015, Renewable Power Generation Costs in 2014[J], International Renewable Energy Agency, Masdar City, Abu Dhabi, United Arab Emirates.
Awogbemi, O. , and Adeyemo, S. B. , 2015, “ Development and Testing of Biogas-Petrol Blend as An Alternative Fuel for Spark Ignition Engine,” Int. J. Sci. Technol. Res., 4(9), pp. 179–186. http://www.ijstr.org/final-print/sep2015/Development-And-Testing-Of-Biogas-petrol-Blend-As-An-Alternative-Fuel-For-Spark-Ignition-Engine.pdf
Wellinger, A. , Murphy, J. D. , and Baxter, D. , 2013, The Biogas Handbook: Science, Production and Applications, Woodhead Publishing, Cambridge, UK.
Metghalchi, M. , and Keck, J. C. , 1982, “ Burning Velocities of Mixtures of Air With Methanol, Isooctane, and Indolene at High Pressure and Temperature,” Combust. Flame, 48, pp. 191–210. [CrossRef]
Hernandez, J. J. , Lapuerta, M. , Serrano, C. , et al. ., 2005, “ Estimation of the Laminar Flame Speed of Producer Gas From Biomass Gasification,” Energy Fuels, 19(5), pp. 2172–2178. [CrossRef]
Wang, Z. , Alswat, M. , Yu, G. , and Allehaibi, M. O. , and Metghalchi, H. , 2017, “ Flame Structure and Laminar Burning Speed of Gas to Liquid Fuel Air Mixtures at Moderate Pressures and High Temperatures,” Fuel, 209, pp. 529–537. [CrossRef]
Chan, Y. L. , Zhu, M. M. , Zhang, Z. Z. , Liu, P. F. , and Zhang, D. K. , 2015, “ The Effect of CO2 Dilution on the Laminar Burning Velocity of Premixed Methane/Air Flames,” Energy Procedia, 75, pp. 3048–3053. [CrossRef]
Zahedi, P. , and Yousefi, K. , 2014, “ Effects of Pressure and Carbon Dioxide, Hydrogen and Nitrogen Concentration on Laminar Burning Velocities and NO Formation of Methane-Air Mixtures,” J. Mech. Sci. Technol., 28(1), pp. 377–386. [CrossRef]
Cardona, C. A. , and Amell, A. A. , 2013, “ Laminar Burning Velocity and Interchangeability Analysis of Biogas/C3H8/H2 with Normal and Oxygen-Enriched Air,” Int. J. Hydrogen Energy, 38(19), pp. 7994–8001. [CrossRef]
Anggono, W. , Wardana, I. N. G. , Lawes, M. , et al. ., 2016, “ The Influence of CO2 in Biogas Flammability Limit and Laminar Burning Velocity in Spark Ignited Premix Combustion at Various Pressures,” AIP Conf. Proc., 1717(1), p. 030001.
Nonaka, H. O. B. , and Pereira, F. M. , 2016, “ Experimental and Numerical Study of CO2 Content Effects on the Laminar Burning Velocity of Biogas,” Fuel, 182, pp. 382–390. [CrossRef]
Halter, F. , Foucher, F. , Landry, L. , and Mounaïm-Rousselle, C. , 2009, “ Effect of Dilution by Nitrogen and/or Carbon Dioxide on Methane and Iso-Octane Air Flames,” Combust. Sci. Technol., 181(6), pp. 813–827. [CrossRef]
Cohe, C. , Chauveau, C. , Gökalp, I. , et al. ., 2009, “ CO2 Addition and Pressure Effects on Laminar and Turbulent Lean Premixed CH4 Air Flames,” Proc. Combust. Inst., 32(2), pp. 1803–1810. [CrossRef]
Stone, R. , Clarke, A. , and Beckwith, P. , 1998, “ Correlations for the Laminar-Burning Velocity of Methane/Diluent/Air Mixtures Obtained in Free-Fall Experiments,” Combust. Flame, 114(3–4), pp. 546–555. [CrossRef]
Walsh, J. L. , Ross, C. C. , Smith, M. S. , et al. ., 1988, Biogas Utilization Handbook, Georgia Tech Research Institute, Atlanta, GA.
Liu, T. , Zhang, G. , Li, Y. , and Harper, S. R. , 2018, “ Performance Analysis of Partially Recuperative Gas Turbine Combined Cycle Under Off-Design Conditions,” Energy Convers. Manage., 162, pp. 55–65. [CrossRef]
Asgari, O. , Hannani, S. K. , and Ebrahimi, R. , 2012, “ Improvement and Experimental Validation of a Multi-Zone Model for Combustion and NO Emissions in CNG Fueled Spark Ignition Engine,” J. Mech. Sci. Technol., 26(4), pp. 1205–1212. [CrossRef]
Dupont, L. , and Accorsi, A. , 2006, “ Explosion Characteristics of Synthesised Biogas at Various Temperatures,” J. Hazardous Mater., 136(3), pp. 520–525. [CrossRef]
Liu, F. , Guo, H. , and Smallwood, G. J. , 2003, “ The Chemical Effect of CO2 Replacement of N2 in Air on the Burning Velocity of CH4 and H2 Premixed Flames,” Combust. Flame, 133(4), pp. 495–497. [CrossRef]
Hinton, N. , and Stone, R. , 2014, “ Laminar Burning Velocity Measurements of Methane and Carbon Dioxide Mixtures (Biogas) Over Wide Ranging Temperatures and Pressures,” Fuel, 116, pp. 743–750. [CrossRef]
Far, K. E. , Parsinejad, F. , and Metghalchi, H. , 2010, “ Flame Structure and Laminar Burning Speeds of JP-8/Air Premixed Mixtures at High Temperatures and Pressures,” Fuel, 89(5), pp. 1041–1049. [CrossRef]
Burke, M. P. , Chaos, M. , Dryer, F. L. , and Ju, Y. , 2010, “ Negative Pressure Dependence of Mass Burning Rates of H2/CO/O2/Diluent Flames at Low Flame Temperatures,” Combust. Flame, 157(4), pp. 618–631. [CrossRef]
Burke, M. P. , Chen, Z. , Ju, Y. , and Dryer, F. L. , 2009, “ Effect of Cylindrical Confinement on the Determination of Laminar Flame Speeds Using Outwardly Propagating Flames,” Combust. Flame, 156(4), pp. 771–779. [CrossRef]
Askari, O. , Moghaddas, A. , Alholm, A. , Alhazmi, B. , and Metghalchi, H. , 2016, “ Laminar Burning Speed Measurement and Flame Instability Study of H2/CO/Air Mixtures at High Temperatures and Pressures Using a Novel Multi-Shell Model,” Combust. Flame, 168, pp. 20–31. [CrossRef]
Askari, O. , Metghalchi, H. , Hannani, S. K. , Moghaddas, A. , Ebrahimi, R. , and Hemmati, H. , 2013, “ Fundamental Study of Spray and Partially Premixed Combustion of Methane/Air Mixture,” ASME J. Energy Resour. Technol., 135(2), p. 021001. [CrossRef]
Askari, O. , Vien, K. , Wang, Z. , Sirio, M. , and Metghalchi, H. , 2016, “ Exhaust Gas Recirculation Effects on Flame Structure and Laminar Burning Speeds of H2/CO/Air Flames at High Pressures and Temperatures,” Appl. Energy, 179, pp. 451–462. [CrossRef]
Askari, O. , Wang, Z. , Vien, K. , Sirio, M. , and Metghalchi, H. , 2017, “ On the Flame Stability and Laminar Burning Speeds of Syngas/O2/He Premixed Flame[J],” Fuel, 190, pp. 90–103. [CrossRef]
Kadowaki, S. , Suzuki, H. , and Kobayashi, H. , 2005, “ The Unstable Behavior of Cellular Premixed Flames Induced by Intrinsic Instability,” Proc. Combust. Inst., 30(1), pp. 169–176. [CrossRef]
Law, C. K. , and Kwon, O. C. , 2004, “ Effects of Hydrocarbon Substitution on Atmospheric Hydrogen–Air Flame Propagation,” Int. J. Hydrogen Energy, 29(8), pp. 867–879. [CrossRef]
Sivashinsky, G. I. , 1977, “ Diffusional-Thermal Theory of Cellular Flames,” Combust. Sci. Technol., 15(3–4), pp. 137–145. [CrossRef]
Sivashinsky, G. I. , 1983, “ Instabilities, Pattern Formation, and Turbulence in Flames,” Annu. Rev. Fluid Mech., 15(1), pp. 179–199. [CrossRef]
Bechtold, J. K. , and Matalon, M. , 1987, “ Hydrodynamic and Diffusion Effects on the Stability of Spherically Expanding Flames,” Combust. Flame, 67(1), pp. 77–90. [CrossRef]
Metghalchi, M. , and Keck, J. C. , 1980, “ Laminar Burning Velocity of Propane-Air Mixtures at High Temperature and Pressure,” Combust. Flame, 38, pp. 143–154. [CrossRef]
Yu, G. , Askari, O. , Hadi, F. , Wang, Z. , Metghalchi, H. , Kannaiyan, K. , and Sadr, R. , 2017, “ Theoretical Prediction of Laminar Burning Speed and Ignition Delay Time of Gas-to-Liquid Fuel,” ASME J. Energy Resour. Technol., 139(2), p. 022202. [CrossRef]
Yu, G. , Askari, O. , and Metghalchi, H. , 2018, “ Theoretical Prediction of the Effect of Blending JP-8 With Syngas on the Ignition Delay Time and Laminar Burning Speed,” ASME J. Energy Resour. Technol., 140(1), p. 012204. [CrossRef]
Parsinejad, F. , Arcari, C. , and Metghalchi, H. , 2006, “ Flame Structure and Burning Speed of JP-10 Air Mixtures,” Combust. Sci. Technol., 178(5), pp. 975–1000. [CrossRef]
Eisazadeh-Far, K. , Parsinejad, F. , Metghalchi, H. , and Keck, J. C. , 2010, “ On Flame Kernel Formation and Propagation in Premixed Gases,” Combust. Flame, 157(12), pp. 2211–2221. [CrossRef]
Rahim, F. , Elia, M. , Ulinski, M. , and Metghalchi, M. , 2002, “ Burning Velocity Measurements of Methane-Oxygen-Argon Mixtures and an Application to Extend Methane-Air Burning Velocity Measurements,” Int. J. Engine Res., 3(2), pp. 81–92. [CrossRef]
Eisazadeh-Far, K. , Moghaddas, A. , Metghalchi, H. , and Keck. J. C. , 2011, “ The Effect of Diluent on Flame Structure and Laminar Burning Speeds of JP-8/Oxidizer/Diluent Premixed Flames,” Fuel, 90(4), pp. 1476–1486. [CrossRef]
Rahim, F. , Far, K. E. , Parsinejad, F. , and Andrews, R. J. , 2008, “ A Thermodynamic Model to Calculate Burning Speed of Methane-Air-Diluent Mixtures,” Int. J. Thermodyn., 11(4), pp. 151–160. http://dergipark.gov.tr/download/article-file/65737
Parsinejad, F. , Keck, J. C. , and Metghalchi, H. , 2007, “ On the Location of Flame Edge in Shadowgraph Pictures of Spherical Flames: A Theoretical and Experimental Study,” Exp. Fluids, 43(6), pp. 887–894. [CrossRef]
Moghaddas, A. , Bennett, C. , Eisazadeh-Far, K. , and Metghalchi, H. , 2012, “ Measurement of Laminar Burning Speeds and Determination of Onset of Auto-Ignition of Jet-A/Air and Jet Propellant-8/Air Mixtures in a Constant Volume Spherical Chamber,” ASME J. Energy Resour. Technol., 134(2), p. 022205. [CrossRef]
Rokni, E. , Moghaddas, A. , Askari, O. , and Metghalchi, H. , 2015, “ Measurement of Laminar Burning Speeds and Investigation of Flame Stability of Acetylene (C2H2)/Air Mixtures,” ASME J. Energy Resour. Technol., 137(1), p. 012204. [CrossRef]
Eisazadeh-Far, K. , Moghaddas, A. , Rahim, F. , and Metghalchi, H. , 2010, “ Burning Speed and Entropy Production Calculation of a Transient Expanding Spherical Laminar Flame Using a Thermodynamic Model[J],” Entropy, 12(12), pp. 2485–2496. [CrossRef]
Parsinejad, F. , Matlo, M. , and Metghalchi, M. , 2004, “ A Mathematical Model for Schlieren and Shadowgraph Images of Transient Expanding Spherical Thin Flames,” ASME J. Eng. Gas Turbines Power, 126(2), pp. 241–247. [CrossRef]
Wang, Z. , Bai, Z. , Yelishala, S. C. , Yu, G. , and Metghalchi, H. , 2018, “ Effects of Diluent on Laminar Burning Speed and Flame Structure of Gas to Liquid Fuel Air Mixtures at High Temperatures and Moderate Pressures,” Fuel, 231, pp. 204–214. [CrossRef]
Chen, Z. , Qin, X. , Xu, B. , Ju, Y. , and Liu, F. , 2007, “ Studies of Radiation Absorption on Flame Speed and Flammability Limit of CO2 Diluted Methane Flames at Elevated Pressures,” Proc. Combust. Inst., 31(2), pp. 2693–2700. [CrossRef]
Rivière, P. , and Soufiani, A. , 2012, “ Updated Band Model Parameters for H2O, CO2, CH4 and CO Radiation at High Temperature,” Int. J. Heat Mass Transfer, 55(13–14), pp. 3349–3358. [CrossRef]
Goodwin, D. G. , Moffat, H. K. , and Speth, R. L. , 2009, Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes, Caltech, Pasadena, CA.
Wu, F. , Liang, W. , Chen, Z. , Ju, Y. , and Law, C. K. , 2015, “ Uncertainty in Stretch Extrapolation of Laminar Flame Speed From Expanding Spherical Flames,” Proc. Combust. Inst., 35(1), pp. 663–670. [CrossRef]
Eisazadeh-Far, K. , Moghaddas, A. , Al-Mulki, J. , and Metghalchi, H. , 2011, “ Laminar Burning Speeds of Ethanol/Air/Diluent Mixtures,” Proc. Combust. Inst., 33(1), pp. 1021–1027. [CrossRef]
Moghaddas, A. , Eisazadeh-Far, K. , and Metghalchi, H. , 2012, “ Laminar Burning Speed Measurement of Premixed n-Decane/Air Mixtures Using Spherically Expanding Flames at High Temperatures and Pressures,” Combust. Flame, 159(4), pp. 1437–1443. [CrossRef]
Chen, Z. , Burke, M. P. , and Ju, Y. , 2009, “ Effects of Compression and Stretch on the Determination of Laminar Flame Speeds Using Propagating Spherical Flames,” Combust. Theory Modell., 13(2), pp. 343–364. [CrossRef]
Liu, C. , Yan, B. , Chen, G. , and ad Bai, X. S. , 2010, “ Structures and Burning Velocity of Biomass Derived Gas Flames,” Int. J. Hydrogen Energy, 35(2), pp. 542–555. [CrossRef]
Qiao, L. , Gan, Y. , Nishiie, T. , Dahm, W. J. A. , and Oran, E. S. , 2010, “ Extinction of Premixed Methane/Air Flames in Microgravity by Diluents: Effects of Radiation and Lewis Number,” Combust. Flame, 157(8), pp. 1446–1455. [CrossRef]
Xie, Y. , Wang, J. , Zhang, M. , Gong, J. , Jin, W. , and Huang, Z. , 2013, “ Experimental and Numerical Study on Laminar Flame Characteristics of Methane Oxy-Fuel Mixtures Highly Diluted With CO2,” Energy Fuels, 27(10), pp. 6231–6237. [CrossRef]
Yossefi, D. , Belmont, M. R. , Maskell, S. J. , and Ben-Dor, G. , 1998, “ Stimulation and Implementation of Laminar Flow Reactors for the Study of Combustion Systems of Ethane, Methane and Deborane,” Fuel, 77(3), pp. 173–181. [CrossRef]
Natarajan, J. , Lieuwen, T. , and Seitzman, J. , 2007, “ Laminar Flame Speeds of H2/CO Mixtures: Effect of CO2 Dilution, Preheat Temperature, and Pressure,” Combust. Flame, 151(1–2), pp. 104–119. [CrossRef]
Mahishi, M. R. , and Goswami, D. Y. , 2007, “ Thermodynamic Optimization of Biomass Gasifier for Hydrogen Production,” Int. J. Hydrogen Energy, 32(16), pp. 3831–3840. [CrossRef]
Selle, L. , Poinsot, T. , and Ferret, B. , 2011, “ Experimental and Numerical Study of the Accuracy of Flame-Speed Measurements for Methane/Air Combustion in a Slot Burner,” Combust. Flame, 158(1), pp. 146–154. [CrossRef]
Gu, X. J. , Haq, M. Z. , Lawes, M. , and Woolley, R. , 2000, “ Laminar Burning Velocity and Markstein Lengths of Methane–Air Mixtures,” Combust. Flame, 121(1–2), pp. 41–58. [CrossRef]
Coppens, F. H. V. , De Ruyck, J. , and Konnov, A. A. , 2007, “ The Effects of Composition on Burning Velocity and Nitric Oxide Formation in Laminar Premixed Flames of CH4+ H2+ O2+ N2,” Combust. Flame, 149(4), pp. 409–417. [CrossRef]
Kishore, V. R. , Duhan, N. , Ravi, M. R. , and Ray, A. , 2008, “ Measurement of Adiabatic Burning Velocity in Natural Gas-like Mixtures,” Exp. Therm. Fluid Sci., 33(1), pp. 10–16. [CrossRef]
Elia, M. , Ulinski, M. , and Metghalchi, M. , 2001, “ Laminar Burning Velocity of Methane–Air–Diluent Mixtures,” ASME J. Eng. Gas Turbines Power, 123(1), pp. 190–196. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Schematic diagram of experimental facilities

Grahic Jump Location
Fig. 2

Snapshots of biomass/air flames for various equivalence ratios and flame radii at initial temperature of 480 K, initial pressure of 1 atm, and 60% CO2 concentration

Grahic Jump Location
Fig. 3

Snapshots of the stoichiometric biomass/air flames for various initial pressures and flame radii at initial temperature of 480 K, and 60% CO2 concentration

Grahic Jump Location
Fig. 4

Snapshots of the stoichiometric biomass/air flames for various CO2 concentrations at initial pressures of 1 atm and initial temperature of 480 K

Grahic Jump Location
Fig. 5

Schematic of burning speed model

Grahic Jump Location
Fig. 6

Laminar burning speed of methane/air (0% CO2) and biomass/air versus stretch rates at different initial conditions

Grahic Jump Location
Fig. 7

The peak points of laminar burning speed of methane/air (0% CO2) and biomass/air with different CO2 concentrations at pressure of 1 atm

Grahic Jump Location
Fig. 8

Laminar burning speed of methane/air and biomass/air along isentropes for different initial conditions: (a) Ti = 480 K, 0% CO2, Pi = 2 atm; (b) Ti = 300 K, 20% CO2, Pi = 0.5 atm; (c) Ti = 480 K, 40% CO2, Pi = 2 atm; and (d) Ti = 400 K, 60% CO2, Pi = 1 atm

Grahic Jump Location
Fig. 9

Laminar burning speed of methane/air and biomass/air for different equivalence ratios and different temperatures at pressure of 1 atm: (a) 0% CO2, (b) 20% CO2, (c) 40% CO2, and (d) 60% CO2

Grahic Jump Location
Fig. 10

Laminar burning speed of biomass/air mixture for different equivalence ratios and different pressures at temperature of 480 K and 60% CO2 concentration

Grahic Jump Location
Fig. 11

Laminar burning speed of methane/air and biomass/air for different equivalence ratios and different CO2 concentrations at temperature of 480 K and pressure of 1 atm

Grahic Jump Location
Fig. 12

Laminar burning speed as a function of equivalence ratio for methane/air (0% CO2) at pressure of 1 atm and temperature of 300 K (*except data from Kishore which is at 307 K)

Grahic Jump Location
Fig. 13

Laminar burning speed as a function of equivalence ratio for biomass/air with different CO2 concentrations at pressure of 1 atm and temperature of 300 K

Grahic Jump Location
Fig. 14

Laminar burning speed as a function of equivalence ratio for biomass/air with different pressures at temperature of 400 K and 40% CO2 concentration (fuel consists 60% methane and 40% carbon dioxide)

Grahic Jump Location
Fig. 15

Comparison of laminar burning speed as a function of CO2 concentrations for stoichiometric biomass/air with different temperatures at pressure of 1 atm

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In