0
Review Article

Critical Review of Stabilized Nanoparticle Transport in Porous Media

[+] Author and Article Information
Xiaoyan Meng

Petroleum Systems Engineering,
Faculty of Engineering and Applied Science,
University of Regina,
Regina, SK S4S 0A2, Canada

Daoyong Yang

Petroleum Systems Engineering,
Faculty of Engineering and Applied Science,
University of Regina,
Regina, SK S4S 0A2, Canada
e-mail: tony.yang@uregina.ca

1Corresponding author.

Contributed by the Petroleum Division of ASME for publication in the JOURNAL OF ENERGY RESOURCES TECHNOLOGY. Manuscript received July 10, 2018; final manuscript received November 2, 2018; published online January 18, 2019. Editor: Hameed Metghalchi.

J. Energy Resour. Technol 141(7), 070801 (Jan 18, 2019) (25 pages) Paper No: JERT-18-1518; doi: 10.1115/1.4041929 History: Received July 10, 2018; Revised November 02, 2018

Over the past few decades, due to the special features (i.e., easily produced, large-surface-area-to-volume ratio, and engineered particles with designed surface properties), nanoparticles have not only attracted great attentions from the oil and gas industry but also had various applications from drilling and completion, reservoir characterization, to enhanced oil recovery (EOR). As sensors or EOR agents, thus, fate and behavior of nanoparticles in porous media are essential and need to be investigated thoroughly. Nevertheless, most of the published review papers focus on particle transport in saturated porous media, and all of them are about steady-state flow conditions. So far, no attempts have been extended to systematically review current knowledge about nanoparticle transport in porous media with single-phase and two-phase flow systems under both steady-state and unsteady-state conditions. Accordingly, this review will discuss nanoparticle transport phenomena in porous media with its focus on the filtration mechanisms, the underlying interaction forces, and factors dominating nanoparticle transport behavior in porous media. Finally, mathematical models used to describe nanoparticle transport in porous media for both single-phase flow and two-phase flow under steady-state and transient flow conditions will be summarized, respectively.

FIGURES IN THIS ARTICLE
<>
Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Lead, J. R. , and Smith, E. , 2009, Environmental and Human Health Impacts of Nanotechnology, Wiley, Chichester, UK.
Fakoya, M. F. , and Shah, S. N. , 2017, “Emergence of Nanotechnology in the Oil and Gas Industry: Emphasis on the Application of Silica Nanoparticles,” Petroleum, 3(4), pp. 391–405. [CrossRef]
Motamedi, P. , Bargozin, H. , and Pourafshary, P. , 2018, “Management of Implementation of Nanotechnology in Upstream Oil Industry: An Analytic Hierarchy Process Analysis,” ASME J. Energy Resour. Technol., 140(5), p. 052908. [CrossRef]
Chen, L. , Sabatini, D. A. , and Kibbey, T. C. , 2008, “Role of the Air-Water Interface in the Retention of TiO2 Nanoparticles in Porous Media During Primary Drainage,” Environ. Sci. Technol., 42(6), pp. 1916–1921. [CrossRef] [PubMed]
Klaine, S. J. , Alvarez, P. J. , Batley, G. E. , Fernandes, T. F. , Handy, R. D. , Lyon, D. Y. , Mahendra, S. , McLaughlin, M. J. , and Lead, J. R. , 2008, “Nanomaterials in the Environment: Behavior, Fate, Bioavailability, and Effects,” Environ. Toxicol. Chem., 27(9), pp. 1825–1851. [CrossRef] [PubMed]
El-Amin, M. F. , Salama, A. , and Sun, S. , 2012, “Modeling and Simulation of Nanoparticle Transport in a Two-Phase Flow in Porous Media,” SPE International Oilfield Nanotechnology Conference and Exhibition, Noordwijk, The Netherlands, June 12–14, SPE Paper No. SPE-154972-MS.
Zhang, T. , 2012, “Modeling of Nanoparticle Transport in Porous Media,” Ph.D. dissertation, University of Texas at Austin, Austin, TX. https://repositories.lib.utexas.edu/handle/2152/ETD-UT-2012-08-6044
Li, L. , Yuan, X. , Sun, J. , Xu, X. , Li, S. , and Wang, L. , 2013, “Vital Role of Nanotechnology and Nanomaterials in the Field of Oilfield Chemistry,” International Petroleum Technology Conference, Beijing, China, Mar. 26–28, Paper No. IPTC-16401-MS.
Odedele, T. O. , 2014, “Synthesis and Applications of Nanomaterials in Enhanced Oil Recovery,” SPE Nigeria Annual International Conference and Exhibition, Lagos, Nigeria, Aug. 5–7, SPE Paper No. SPE 172448.
Contreras, O. , Alsaba, M. , Hareland, G. , Husein, M. , and Nygaard, R. , 2016, “Effect on Fracture Pressure by Adding Iron-Based and Calcium-Based Nanoparticles to a Nonaqueous Drilling Fluid for Permeable Formations,” ASME J. Energy Resour. Technol., 138(3), p. 032906. [CrossRef]
Pradeep, T. , 2012, A Textbook of Nanoscience and Nanotechnology, Tata McGraw-Hill, New Delhi, India.
Bagheri, S. , Amiri, I. S. , Yousefi, A. T. , and Hamid, S. B. A. , 2016, Nanocomposites in Electrochemical Sensors, CRC Press, Delft, The Netherlands.
Amanullah, M. , and Al-Tahini, A. M. , 2009, “Nano-Technology—Its Significance in Smart Fluid Development for Oil and Gas Field Application,” SPE Saudi Arabia Section Technical Symposium and Exhibition, AlKhobar, Saudi Arabia, May 9–11, SPE Paper No. SPE 126102.
Abtahi, S. M. H. , 2013, “Synthesis and Characterization of Metallic Nanoparticles With Photoactivated Surface Chemistries,” Ph.D. dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA. https://vtechworks.lib.vt.edu/handle/10919/78081
Hassani, A. H. , and Ghazanfari, M. H. , 2018, “Impact of Hydrophobicity of SiO2 Nanoparticles on Enhancing Properties of Colloidal Gas Aphron Fluids: An Experimental Study,” ASME J. Energy Resour. Technol., 140(1), p. 012901. [CrossRef]
Prabu, A. , 2018, “Engine Characteristic Studies by Application of Antioxidants and Nanoparticles as Additives in Biodiesel Diesel Blends,” ASME J. Energy Resour. Technol., 140(8), p. 082203. [CrossRef]
Neouze, M. A. , and Schubert, U. , 2008, “Surface Modification and Functionalization of Metal and Metal Oxide Nanoparticles by Organic Ligands,” Monatsh. Chem.-Chem. Mon., 139(3), pp. 183–195. [CrossRef]
López-Serrano, A. , Olivas, R. M. , Landaluze, J. S. , and Cámara, C. , 2014, “Nanoparticles: A Global Vision. Characterization, Separation, and Quantification Methods. Potential Environmental and Health Impact,” Anal. Methods, 6(1), pp. 38–56. [CrossRef]
Zakaria, M. , Husein, M. M. , and Harland, G. , 2012, “Novel Nanoparticle-Based Drilling Fluid With Improved Characteristics,” SPE International Oilfield Nanotechnology Conference and Exhibition, Noordwijk, The Netherlands, June 12–14, SPE Paper No. SPE 156992.
Contreras, O. , Hareland, G. , Husein, M. , Nygaard, R. , and Al-Saba, M. , 2014, “Application of in-House Prepared Nanoparticles as Filtration Control Additive to Reduce Formation Damage,” SPE International Symposium and Exhibition on Formation Damage Control, Lafayette, LA, Feb. 26–28, SPE Paper No. SPE 168116.
Huang, T. , Crews, J. B. , and Willingham, J. R. , 2008, “Using Nanoparticle Technology to Control Fine Migration,” SPE Annual Technical Conference and Exhibition, Denver, CO, Sept. 21–24, SPE Paper No. SPE 115384.
Ogolo, N. A. , Olafuyi, O. A. , and Onyekonwu, M. O. , 2013, “Impact of Hydrocarbon on the Performance of Nanoparticles in Control of Fines Migration,” SPE Nigeria Annual International Conference and Exhibition, Lagos, Nigeria, Aug. 5–7, SPE Paper No. SPE 167503.
Avendano, C. , Lee, S. S. , Escalera, G. , and Colvin, V. , 2012, “Magnetic Characterization of Nanoparticles Designed for Use as Contrast Agents for Downhole Measurements,” SPE International Oilfield Nanotechnology Conference and Exhibition, Noordwijk, The Netherlands, June 12–14, SPE Paper No. SPE 157123.
Al-Shehri, A. A. , Ellis, E. S. , Servin, J. M. F. , Kosynkin, D. V. , Kanj, M. Y. , and Schmidt, H. K. , 2013, “Illuminating the Reservoir: Magnetic Nanomappers,” SPE Middle East Oil and Gas Show and Exhibition, Manama, Bahrain, Mar. 10–13, SPE Paper No. SPE 164461.
Karimi, A. , Fakhroueian, Z. , Bahramian, A. , Pour Khiabani, N. , Darabad, J. B. , Azin, R. , and Arya, S. , 2012, “Wettability Alteration in Carbonates Using Zirconium Oxide Nanofluids: EOR Implications,” Energy Fuels, 26(2), pp. 1028–1036. [CrossRef]
Ehtesabi, H. , Ahadian, M. M. , Taghikhani, V. , and Ghazanfari, M. H. , 2013, “Enhanced Heavy Oil Recovery in Sandstone Cores Using TiO2 Nanofluids,” Energy Fuels, 28(1), pp. 423–430. [CrossRef]
Giraldo, J. , Benjumea, P. , Lopera, S. , Cortés, F. B. , and Ruiz, M. A. , 2013, “Wettability Alteration of Sandstone Cores by Alumina-Based Nanofluids,” Energy Fuels, 27(7), pp. 3659–3665. [CrossRef]
Safari, M. , 2014, “Variations in Wettability Caused by Nanoparticles,” Pet. Sci. Technol., 32(12), pp. 1505–1511. [CrossRef]
Emadi, A. , Jamiolahmady, M. , Sohrabi, M. , and Irland, S. , 2012, “Visualization of Oil Recovery by CO2-Foam Injection; Effect of Oil Viscosity and Gas Type,” SPE Improved Oil Recovery Symposium, Tulsa, OK, Apr. 14–18, SPE Paper No. SPE 152996.
Xu, X. , Saeedi, A. , and Liu, K. , 2017, “Experimental Study on a Novel Foaming Formula for CO2 Foam Flooding,” ASME J. Energy Resour. Technol., 139(2), p. 022902. [CrossRef]
Espinoza, D. A. , Caldelas, F. M. , Johnston, K. P. , Bryant, S. L. , and Huh, C. , 2010, “ Nanoparticle-Stabilized Supercritical CO2 Foams for Potential Mobility Control Applications,” SPE Improved Oil Recovery Symposium, Tulsa, OK, Apr. 24–28, SPE Paper No. SPE 129925.
Nguyen, P. , Fadaei, H. , and Sinton, D. , 2014, “ Pore-Scale Assessment of Nanoparticle-Stabilized CO2 Foam for Enhanced Oil Recovery,” Energy Fuels, 28(10), pp. 6221–6227. [CrossRef]
Singh, R. , and Mohanty, K. K. , 2016, “Foams Stabilized by In-Situ Surface-Activated Nanoparticles in Bulk and Porous Media,” SPE J., 21(1), pp. 121–130. [CrossRef]
Zhang, L. , Kang, J. , Zhang, Y. , Zhang, P. , Ren, S. , Khataniar, S. , and Guo, X. , 2018, “Experimental Investigation of Amine-Surfactant CO2 Foam Stability Enhanced by Silica Nanoparticles,” ASME J. Energy Resour. Technol., 140(11), p. 112902. [CrossRef]
Greff, J. , and Babadagli, T. , 2011, “Catalytic Effects of Nano-Size Metal Ions in Breaking Asphaltene Molecules During Thermal Recovery of Heavy-Oil,” SPE Annual Technical Conference and Exhibition, Denver, CO, Oct. 30–Nov. 2, SPE Paper No. SPE 146604.
Nassar, N. N. , Hassan, A. , and Pereira-Almao, P. , 2012, “Thermogravimetric Studies on Catalytic Effect of Metal Oxide Nanoparticles on Asphaltene Pyrolysis Under Inert Conditions,” J. Therm. Anal. Calorim., 110(3), pp. 1327–1332. [CrossRef]
Yang, Z. , Liu, X. , Li, X. , Zhao, M. , Zhang, Z. , and Su, C. , 2014, “Preparation of Silica Supported Nanoscale Zero Valence Iron and Its Feasibility in Viscosity Reduction of Heavy Oil,” Micro Nano Lett., 9(5), pp. 355–358. [CrossRef]
Sun, X. , Zhang, Y. , Chen, G. , and Gai, Z. , 2017, “Application of Nanoparticles in Enhanced Oil Recovery: A Critical Review of Recent Progress,” Energies, 10(3), p. 345. [CrossRef]
Ding, Y. , Zheng, S. , Meng, X. , and Yang, D. , 2018, “Low Salinity Hot Water Injection With Addition of Nanoparticles for Enhancing Heavy Oil Recovery Under Reservoir Conditions,” SPE Western Regional Meeting, Garden Grove, CA, Apr. 22–26, SPE Paper No. SPE 190132.
Miranda, C. R. , Lara, L. S. D. , and Tonetto, B. C. , 2012, “Stability and Mobility of Functionalized Silica Nanoparticles for Enhanced Oil Recovery Applications,” SPE International Oilfield Nanotechnology Conference and Exhibition, Noordwijk, The Netherlands, June 12–14, SPE Paper No. SPE 157033.
Kamal, M. S. , Adewunmi, A. A. , Sultan, A. S. , Al-Hamad, M. F. , and Mehmood, U. , 2017, “Recent Advances in Nanoparticles Enhanced Oil Recovery: Rheology, Interfacial Tension, Oil Recovery, and Wettability Alteration,” J. Nanomater., 2017, p. 2473175.
Lau, H. C. , Yu, M. , and Nguyen, Q. P. , 2017, “Nanotechnology for Oilfield Applications: Challenges and Impact,” J. Pet. Sci. Eng., 157, pp. 1160–1169. [CrossRef]
Arab, D. , Kantzas, A. , and Bryant, S. L. , 2018, “Nanoparticle Stabilized Oil in Water Emulsions: A Critical Review,” J. Pet. Sci. Eng., 163, pp. 217–242. [CrossRef]
Wang, M. , Gao, B. , and Tang, D. , 2016, “Review of Key Factors Controlling Engineered Nanoparticle Transport in Porous Media,” J. Hazard. Mater., 318, pp. 233–246. [CrossRef] [PubMed]
Babakhani, P. , Bridge, J. , Doong, R. A. , and Phenrat, T. , 2017, “ Continuum-Based Models and Concepts for the Transport of Nanoparticles in Saturated Porous Media: A State-of-the-Science Review,” Adv. Colloid Interface Sci., 246, pp. 75–104. [CrossRef] [PubMed]
Hotze, E. M. , Phenrat, T. , and Lowry, G. V. , 2010, “Nanoparticle Aggregation: Challenges to Understanding Transport and Reactivity in the Environment,” J. Environ. Qual., 39(6), pp. 1909–1924. [CrossRef] [PubMed]
Petosa, A. R. , Jaisi, D. P. , Quevedo, I. R. , Elimelech, M. , and Tufenkji, N. , 2010, “Aggregation and Deposition of Engineered Nanomaterials in Aquatic Environments: Role of Physicochemical Interactions,” Environ. Sci. Technol., 44(17), pp. 6532–6549. [CrossRef] [PubMed]
Molnar, I. L. , Johnson, W. P. , Gerhard, J. I. , Willson, C. S. , and O'Carroll, D. M. , 2015, “Predicting Colloid Transport Through Saturated Porous Media: A Critical Review,” Water Resour. Res., 51(9), pp. 6804–6845. [CrossRef]
DeNovio, N. M. , Saiers, J. E. , and Ryan, J. N. , 2004, “Colloid Movement in Unsaturated Porous Media: Recent Advances and Future Directions,” Vadose Zone J., 3(2), pp. 338–351. http://www.geol.lsu.edu/blanford/NATORBF/6%20Hydraulics%20of%20Clogging%20of%20RBF%20Systems/Real%206/DeNovio%20et%20al_Vadose_2004.PDF
Grasso, D. , Subramaniam, K. , Butkus, M. , Strevett, K. , and Bergendahl, J. , 2002, “A Review of Non-DLVO Interactions in Environmental Colloidal Systems,” Rev. Environ. Sci. Biotechnol., 1(1), pp. 17–38. [CrossRef]
Bradford, S. A. , and Torkzaban, S. , 2008, “Colloid Transport and Retention in Unsaturated Porous Media: A Review of Interface-, Collector-, and Pore-Scale Processes and Models,” Vadose Zone J., 7(2), pp. 667–681. [CrossRef]
McDowell-Boyer, L. M. , Hunt, J. R. , and Sitar, N. , 1986, “Particle Transport Through Porous Media,” Water Resour. Res., 22(13), pp. 1901–1921. [CrossRef]
Herzig, J. P. , Leclerc, D. M. , and Goff, P. L. , 1970, “Flow of Suspensions Through Porous Media-Application to Deep Filtration,” Ind. Eng. Chem., 62(5), pp. 8–35. [CrossRef]
Bradford, S. A. , Yates, S. R. , Bettahar, M. , and Simunek, J. , 2002, “Physical Factors Affecting the Transport and Fate of Colloids in Saturated Porous Media,” Water Resour. Res., 38(12), p. 1327.
Xu, S. , Gao, B. , and Saiers, J. E. , 2006, “Straining of Colloidal Particles in Saturated Porous Media,” Water Resour. Res., 42(12), p. W12S16.
Shen, C. , Huang, Y. , Li, B. , and Jin, Y. , 2008, “Effects of Solution Chemistry on Straining of Colloids in Porous Media Under Unfavorable Conditions,” Water Resour. Res., 44(5), p. W05419.
Wang, Y. , 2009, “Transport and Retention of Fullerene-Based Nanoparticles in Water-Saturated Porous Media,” Ph.D. dissertation, Georgia Institute of Technology, Atlanta, GA. https://smartech.gatech.edu/handle/1853/29782
Jaisi, D. P. , Saleh, N. B. , Blake, R. E. , and Elimelech, M. , 2008, “Transport of Single-Walled Carbon Nanotubes in Porous Media: Filtration Mechanisms and Reversibility,” Environ. Sci. Technol., 42(22), pp. 8317–8323. [CrossRef] [PubMed]
Wan, J. , and Tokunaga, T. K. , 1997, “Film Straining of Colloids in Unsaturated Porous Media: Conceptual Model and Experimental Testing,” Environ. Sci. Technol., 31(8), pp. 2413–2420. [CrossRef]
Gao, B. , Steenhuis, T. S. , Zevi, Y. , Morales, V. L. , Nieber, J. L. , Richards, B. K. , McCarthy, J. F. , and Parlange, J. , 2008, “Capillary Retention of Colloids in Unsaturated Porous Media,” Water Resour. Res., 44(4), p. W04504. [CrossRef]
Wan, J. , and Wilson, J. L. , 1994, “Visualization of the Role of the Gas-Water Interface on the Fate and Transport of Colloids in Porous Media,” Water Resour. Res., 30(1), pp. 11–23. [CrossRef]
Jin, Y. , Chu, Y. , and Li, Y. , 2000, “Virus Removal and Transport in Saturated and Unsaturated Sand Columns,” J. Contam. Hydrol., 43(2), pp. 111–128. [CrossRef]
Keller, A. A. , and Sirivithayapakorn, S. , 2004, “Transport of Colloids in Unsaturated Porous Media: Explaining Large-Scale Behavior Based on Pore-Scale Mechanisms,” Water Resour. Res., 40(12), p. W12403.
Zevi, Y. , Dathe, A. , McCarthy, J. F. , Richards, B. K. , and Steenhuis, T. S. , 2005, “Distribution of Colloid Particles Onto Interfaces in Partially Saturated Sand,” Environ. Sci. Technol., 39(18), pp. 7055–7064. [CrossRef] [PubMed]
Chen, G. , and Flury, M. , 2005, “Retention of Mineral Colloids in Unsaturated Porous Media as Related to Their Surface Properties,” Colloids Surf. A: Physicochem. Eng. Aspects, 256(2–3), pp. 207–216. [CrossRef]
Crist, J. T. , McCarthy, J. F. , Zevi, Y. , Baveye, P. , Throop, J. A. , and Steenhuis, T. S. , 2004, “ Pore-Scale Visualization of Biocolloid Transport and Retention in Partly Saturated Porous Media,” Vadose Zone J., 3(2), pp. 444–450. [CrossRef]
Crist, J. T. , Zevi, Y. , McCarthy, J. F. , Throop, J. A. , and Steenhuis, T. S. , 2005, “Transport and Retention Mechanisms of Colloids in Partially Saturated Porous Media,” Vadose Zone J., 4(1), pp. 184–195. [CrossRef]
Zhang, W. , Morales, V. L. , Cakmak, M. E. , Salvucci, A. E. , Geohring, L. D. , Hay, A. G. , Parlange, J. Y. , and Steenhuis, T. S. , 2010, “Colloid Transport and Retention in Unsaturated Porous Media: Effect of Colloid Input Concentration,” Environ. Sci. Technol., 44(13), pp. 4965–4972. [CrossRef] [PubMed]
Sang, W. , Morales, V. L. , Zhang, W. , Stoof, C. R. , Gao, B. , Schatz, A. L. , Zhang, Y. , and Steenhuis, T. S. , 2013, “Quantification of Colloid Retention and Release by Straining and Energy Minima in Variably Saturated Porous Media,” Environ. Sci. Technol., 47(15), pp. 8256–8264. [PubMed]
Zhang, Q. , Hassanizadeh, S. M. , Karadimitriou, N. K. , Raoof, A. , Liu, B. , Kleingeld, P. J. , and Imhof, A. , 2013, “Retention and Remobilization of Colloids During Steady-State and Transient Two-Phase Flow,” Water Resour. Res., 49(12), pp. 8005–8016. [CrossRef]
Xu, S. , Qi, J. , Chen, X. , Lazouskaya, V. , Zhuang, J. , and Jin, Y. , 2016, “Coupled Effect of Extended DLVO and Capillary Interactions on the Retention and Transport of Colloids Through Unsaturated Porous Media,” Sci. Total Environ., 573, pp. 564–572. [CrossRef] [PubMed]
Flury, M. , and Aramrak, S. , 2017, “Role of Air‐Water Interfaces in Colloid Transport in Porous Media: A Review,” Water Resour. Res., 53(7), pp. 5247–5275. [CrossRef]
Fang, J. , Xu, M. , Wang, D. , Wen, B. , and Han, J. , 2013, “Modeling the Transport of TiO2 Nanoparticle Aggregates in Saturated and Unsaturated Granular Media: Effects of Ionic Strength and pH,” Water Res., 47(3), pp. 1399–1408. [CrossRef] [PubMed]
Yu, H. , 2012, “Transport and Retention of Surface-Modified Nanoparticles in Sedimentary Rocks,” Ph.D. dissertation, University of Texas at Austin, Austin, TX. https://repositories.lib.utexas.edu/handle/2152/22237
Toloni, I. , Lehmann, F. , and Ackerer, P. , 2016, “Modeling the Effects of Water Content on TiO2 Nanoparticles Transport in Porous Media,” J. Contam. Hydrol., 191, pp. 76–87. [CrossRef] [PubMed]
Tian, Y. , Gao, B. , Silvera-Batista, C. , and Ziegler, K. J. , 2010, “Transport of Engineered Nanoparticles in Saturated Porous Media,” J. Nanopart. Res., 12(7), pp. 2371–2380. [CrossRef]
Metin, C. O. , Baran, J. R. , and Nguyen, Q. P. , 2012, “Adsorption of Surface Functionalized Silica Nanoparticles Onto Mineral Surfaces and Decane/Water Interface,” J. Nanopart. Res., 14(11), p. 1246.
Sasidharan, S. , Torkzaban, S. , Bradford, S. A. , Dillon, P. J. , and Cook, P. G. , 2014, “Coupled Effects of Hydrodynamic and Solution Chemistry on Long-Term Nanoparticle Transport and Deposition in Saturated Porous Media,” Colloids Surf. A: Physicochem. Eng. Aspect, 457, pp. 169–179. [CrossRef]
Treumann, S. , Torkzaban, S. , Bradford, S. A. , Visalakshan, R. M. , and Page, D. , 2014, “An Explanation for Differences in the Process of Colloid Adsorption in Batch and Column Studies,” J. Contam. Hydrol., 164, pp. 219–229. [CrossRef] [PubMed]
Bayat, A. E. , Junin, R. , Derahman, M. N. , and Samad, A. A. , 2015, “TiO2 Nanoparticle Transport and Retention Through Saturated Limestone Porous Media Under Various Ionic Strength Conditions,” Chemosphere, 134, pp. 7–15. [CrossRef] [PubMed]
Abdelfatah, E. R. , Kang, K. , Pournik, M. , Shiau, B. , Harwell, J. , Haroun, M. R. , and Rahman, M. M. , 2017, “Study of Nanoparticle Adsorption and Release in Porous Media Based on the DLVO Theory,” SPE Latin America and Caribbean Petroleum Engineering Conference, Buenos Aires, Argentina, May 18–19, SPE Paper No. SPE 185484.
Elimelech, M. , Gregory, J. , Jia, X. , and Williams, R. A. , 1995, Particle Deposition and Aggregation: Measurement, Modeling, and Simulation, Butterworth-Heinemann, Oxford, UK.
Zhang, Q. , Hassanizadeh, S. M. , Liu, B. , Schijven, J. F. , and Karadimitriou, N. K. , 2014, “Effect of Hydrophobicity on Colloid Transport During Two-Phase Flow in a Micromodel,” Water Resour. Res., 50(10), pp. 7677–7691. [CrossRef]
Zhang, T. , Murphy, M. J. , Yu, H. , Bagaria, H. G. , Yoon, K. Y. , Nielson, B. M. , Blelawski, C. W. , Johnston, K. P. , Huh, C. , and Bryant, S. L. , 2015, “Investigation of Nanoparticle Adsorption During Transport in Porous Media,” SPE J., 20(4), pp. 667–677. [CrossRef]
Guzman, K. A. D. , Finnegan, M. P. , and Banfield, J. F. , 2006, “Influence of Surface Potential on Aggregation and Transport of Titania Nanoparticles,” Environ. Sci. Technol., 40(24), pp. 7688–7693. [CrossRef] [PubMed]
Wang, C. , Bobba, A. D. , Attinti, R. , Shen, C. , Lazouskaya, V. , Wang, L. P. , and Jin, Y. , 2012, “Retention and Transport of Silica Nanoparticles in Saturated Porous Media: Effect of Concentration and Particle Size,” Environ. Sci. Technol., 46(13), pp. 7151–7158. [CrossRef] [PubMed]
Hoek, E. , and Agarwal, G. K. , 2006, “Extended DLVO Interactions Between Spherical Particles and Rough Surfaces,” J. Colloid Interface Sci., 298(1), pp. 50–58. [CrossRef] [PubMed]
Li, K. , and Chen, Y. , 2012, “Effect of Natural Organic Matter on the Aggregation Kinetics of CeO2 Nanoparticles in KCl and CaCl2 Solutions: Measurements and Modeling,” J. Hazard. Mater., 209, pp. 264–270. [CrossRef] [PubMed]
Bradford, S. A. , Torkzaban, S. , Leij, F. , and Simunek, J. , 2015, “Equilibrium and Kinetic Models for Colloid Release Under Transient Solution Chemistry Conditions,” J. Contam. Hydrol., 181, pp. 141–152. [CrossRef] [PubMed]
Sirivithayapakorn, S. , and Keller, A. , 2003, “Transport of Colloids in Unsaturated Porous Media: A Pore-Scale Observation of Processes During the Dissolution of Air-Water Interface,” Water Resour. Res., 39(12), p. 1346. [CrossRef]
Gao, B. , Saiers, J. E. , and Ryan, J. , 2006, “ Pore-Scale Mechanisms of Colloid Deposition and Mobilization During Steady and Transient Flow Through Unsaturated Granular Media,” Water Resour. Res., 42, p. W01410. [CrossRef]
Sharma, P. , Flury, M. , and Zhou, J. , 2008, “Detachment of Colloids From a Solid Surface by a Moving Air-Water Interface,” J. Colloid Interface Sci., 326(1), pp. 143–150. [CrossRef] [PubMed]
Shang, J. , Flury, M. , and Deng, Y. , 2009, “Force Measurements Between Particles and the Air-Water Interface: Implications for Particle Mobilization in Unsaturated Porous Media,” Water Resour. Res., 45, p. W06420. [CrossRef]
Aramrak, S. , Flury, M. , and Harsh, J. B. , 2011, “Detachment of Deposited Colloids by Advancing and Receding Air-Water Interfaces,” Langmuir, 27(16), pp. 9985–9993. [CrossRef] [PubMed]
Lazouskaya, V. , Jin, Y. , and Or, D. , 2006, “Interfacial Interactions and Colloid Retention Under Steady Flows in a Capillary Channel,” J. Colloid Interface Sci., 303(1), pp. 171–184. [CrossRef] [PubMed]
Zevi, Y. , Gao, B. , Zhang, W. , Morales, V. L. , Ekrem Cakmak, M. , Medrano, E. A. , Sang, W. , and Steenhuis, T. S. , 2012, “Colloid Retention at the Meniscus-Wall Contact Line in an Open Microchannel,” Water Res., 46(2), pp. 295–306. [CrossRef] [PubMed]
Ray, P. C. , 2012, Colloids: Classification, Properties, and Applications, Nova Science Publishers, Hauppauge, NY.
Hendraningrat, L. , Li, S. , and Torsæter, O. , 2012, “A Glass Micromodel Experimental Study of Hydrophilic Nanoparticles Retention for EOR Project,” SPE Russian Oil and Gas Exploration and Production Technical Conference and Exhibition, Moscow, Russia, Oct. 16–18, SPE Paper No. SPE 159161.
Li, S. , Hendraningrat, L. , and Torsæter, O. , 2013, “Improved Oil Recovery by Hydrophilic Silica Nanoparticles Suspension: 2-Phase Flow Experimental Studies,” International Petroleum Technology Conference, Beijing, China, Mar. 26–28, SPE Paper No. IPTC 16707.
Van Bramer, W. C. , 2014, “Nanoparticle Dispersion Flow for Enhanced Oil Recovery Using Micromodels,” M.Sc. thesis, University of Texas at Austin, Austin, TX. https://repositories.lib.utexas.edu/handle/2152/26460
Li, S. , and Torsæter, O. , 2015, “The Impact of Nanoparticles Adsorption and Transport on Wettability Alteration of Water Wet Berea Sandstone,” SPE/IATMI Asia Pacific Oil and Gas Conference and Exhibition, Nusa Dua, Bali, Indonesia, Oct. 20–22, SPE Paper No. SPE 176256.
Cheraghian, G. , Kiani, S. , Nassar, N. N. , Alexander, S. , and Barron, A. R. , 2017, “Silica Nanoparticle Enhancement in the Efficiency of Surfactant Flooding of Heavy Oil in a Glass Micromodel,” Ind. Eng. Chem. Res., 56(30), pp. 8528–8534. [CrossRef]
Bayat, A. E. , and Junin, R. , 2015, “Transportation of Metal Oxide Nanoparticles Through Various Porous Media for Enhanced Oil Recovery,” SPE/IATMI Asia Pacific Oil and Gas Conference and Exhibition, Bali, Indonesia, Oct. 20–22, SPE Paper No. SPE 176365.
Park, C. M. , Chu, K. H. , Heo, J. , Her, N. , Jang, M. , Son, A. , and Yoon, Y. , 2016, “Environmental Behavior of Engineered Nanomaterials in Porous Media: A Review,” J. Hazard. Mater., 309, pp. 133–150. [CrossRef] [PubMed]
Caldelas, F. M. , Murphy, M. , Huh, C. , and Bryant, S. L. , 2011, “Factors Governing Distance of Nanoparticle Propagation in Porous Media,” SPE Production and Operations Symposium, Oklahoma, OK, Mar. 27–29, SPE Paper No. SPE 142305.
Sasidharan, S. , Torkzaban, S. , Bradford, S. A. , Cook, P. G. , and Gupta, V. V. , 2017, “Temperature Dependency of Virus and Nanoparticle Transport and Retention in Saturated Porous Media,” J. Contam. Hydrol., 196, pp. 10–20. [CrossRef] [PubMed]
Duffadar, R. D. , and Davis, J. M. , 2007, “Interaction of Micrometer-Scale Particles With Nanotextured Surfaces in Shear Flow,” J. Colloid Interface Sci., 308(1), pp. 20–29. [CrossRef] [PubMed]
Bendersky, M. , and Davis, J. M. , 2011, “DLVO Interaction of Colloidal Particles With Topographically and Chemically Heterogeneous Surfaces,” J. Colloid Interface Sci., 353(1), pp. 87–97. [CrossRef] [PubMed]
Shen, C. , Wang, F. , Li, B. , Jin, Y. , Wang, L. , and Huang, Y. , 2012, “Application of DLVO Energy Map to Evaluate Interactions Between Spherical Colloids and Rough Surfaces,” Langmuir, 28(41), pp. 14681–14692. [CrossRef] [PubMed]
Bradford, S. A. , and Torkzaban, S. , 2013, “Colloid Interaction Energies for Physically and Chemically Heterogeneous Porous Media,” Langmuir, 29(11), pp. 3668–3676. [CrossRef] [PubMed]
Suresh, L. , and Walz, J. Y. , 1996, “Effect of Surface Roughness on the Interaction Energy Between a Colloidal Sphere and a Flat Plate,” J. Colloid Interface Sci., 183(1), pp. 199–213. [CrossRef]
Wiesner, M. R. , and Bottero, J. Y. , 2007, Environmental Nanotechnology: Applications and Impacts of Nanomaterials, McGraw-Hill , New York.
Torkzaban, S. , Kim, Y. , Mulvihill, M. , Wan, J. , and Tokunaga, T. K. , 2010, “Transport and Deposition of Functionalized CdTe Nanoparticles in Saturated Porous Media,” J. Contam. Hydrol., 118(3–4), pp. 208–217. [CrossRef] [PubMed]
Loveland, J. P. , Bhattacharjee, S. , Ryan, J. N. , and Elimelech, M. , 2003, “Colloid Transport in a Geochemically Heterogeneous Porous Medium: Aquifer Tank Experiment and Modeling,” J. Contam. Hydrol., 65(3–4), pp. 161–182. [CrossRef] [PubMed]
Johnson, P. R. , Sun, N. , and Elimelech, M. , 1996, “Colloid Transport in Geochemically Heterogeneous Porous Media: Modeling and Measurements,” Environ. Sci. Technol., 30(11), pp. 3284–3293. [CrossRef]
Tufenkji, N. , and Elimelech, M. , 2005, “Breakdown of Colloid Filtration Theory: Role of the Secondary Energy Minimum and Surface Charge Heterogeneities,” Langmuir, 21(3), pp. 841–852. [CrossRef] [PubMed]
Yao, K. M. , Habibian, M. T. , and O'Melia, C. R. , 1971, “Water and Wastewater Filtration: Concepts and Applications,” Environ. Sci. Technol., 5(11), pp. 1105–1112. [CrossRef]
Liu, X. , O'Carroll, D. M. , Petersen, E. J. , Huang, Q. , and Anderson, C. L. , 2009, “Mobility of Multiwalled Carbon Nanotubes in Porous Media,” Environ. Sci. Technol., 43(21), pp. 8153–8158. [CrossRef] [PubMed]
Bradford, S. A. , Simunek, J. , Bettahar, M. , van Genuchten, M. T. , and Yates, S. R. , 2003, “Modeling Colloid Attachment, Straining, and Exclusion in Saturated Porous Media,” Environ. Sci. Technol., 37(10), pp. 2242–2250. [CrossRef] [PubMed]
Corapcioglu, M. Y. , and Choi, H. , 1996, “Modeling Colloid Transport in Unsaturated Porous Media and Validation With Laboratory Column Data,” Water Resour. Res., 32(12), pp. 3437–3449. [CrossRef]
Bradford, S. A. , Torkzaban, S. , and Simunek, J. , 2011, “Modeling Colloid Transport and Retention in Saturated Porous Media Under Unfavorable Attachment Conditions,” Water Resour. Res., 47(10), p. W10503. [CrossRef]
Kasel, D. , Bradford, S. A. , Šimůnek, J. , Heggen, M. , Vereecken, H. , and Klumpp, E. , 2013, “Transport and Retention of Multi-Walled Carbon Nanotubes in Saturated Porous Media: Effects of Input Concentration and Grain Size,” Water Res., 47(2), pp. 933–944. [CrossRef] [PubMed]
Jiang, X. , Tong, M. , Lu, R. , and Kim, H. , 2012, “Transport and Deposition of ZnO Nanoparticles in Saturated Porous Media,” Colloids Surf. A: Physicochem. Eng. Aspects, 401, pp. 29–37. [CrossRef]
He, F. , Zhang, M. , Qian, T. , and Zhao, D. , 2009, “Transport of Carboxymethyl Cellulose Stabilized Iron Nanoparticles in Porous Media: Column Experiments and Modeling,” J. Colloid Interface Sci., 334(1), pp. 96–102. [CrossRef] [PubMed]
Rahman, T. , George, J. , and Shipley, H. J. , 2013, “Transport of Aluminum Oxide Nanoparticles in Saturated Sand: Effects of Ionic Strength, Flow Rate, and Nanoparticle Concentration,” Sci. Total Environ., 463–464, pp. 565–571. [CrossRef] [PubMed]
Camesano, T. A. , Unice, K. M. , and Logan, B. E. , 1999, “Blocking and Ripening of Colloids in Porous Media and Their Implications for Bacterial Transport,” Colloids Surf. A: Physicochem. Eng. Aspects, 160(3), pp. 291–307. [CrossRef]
Li, Y. , Wang, Y. , Pennell, K. D. , and Abriola, L. M. , 2008, “Investigation of the Transport and Deposition of Fullerene (C60) Nanoparticles in Quartz Sands Under Varying Flow Conditions,” Environ. Sci. Technol., 42(19), pp. 7174–7180. [CrossRef] [PubMed]
Wang, Y. , Li, Y. , Fortner, J. D. , Hughes, J. B. , Abriola, L. M. , and Pennell, K. D. , 2008, “Transport and Retention of Nanoscale C60 Aggregates in Water-Saturated Porous Media,” Environ. Sci. Technol., 42(10), pp. 3588–3594. [CrossRef] [PubMed]
Liang, Y. , Bradford, S. A. , Simunek, J. , Heggen, M. , Vereecken, H. , and Klumpp, E. , 2013, “Retention and Remobilization of Stabilized Silver Nanoparticles in an Undisturbed Loamy Sand Soil,” Environ. Sci. Technol., 47(21), pp. 12229–12237. [CrossRef] [PubMed]
Rahmatpour, S. , Mosaddeghi, M. R. , Shirvani, M. , and Šimůnek, J. , 2018, “Transport of Silver Nanoparticles in Intact Columns of Calcareous Soils: The Role of Flow Conditions and Soil Texture,” Geoderma, 322, pp. 89–100. [CrossRef]
Tufenkji, N. , and Elimelech, M. , 2004, “Deviation From the Classical Colloid Filtration Theory in the Presence of Repulsive DLVO Interactions,” Langmuir, 20(25), pp. 10818–10828. [CrossRef] [PubMed]
Mattison, N. T. , O'Carroll, D. M. , Kerry Rowe, R. , and Petersen, E. J. , 2011, “Impact of Porous Media Grain Size on the Transport of Multi-Walled Carbon Nanotubes,” Environ. Sci. Technol., 45(22), pp. 9765–9775. [CrossRef] [PubMed]
Rahman, T. , Millwater, H. , and Shipley, H. J. , 2014, “Modeling and Sensitivity Analysis on the Transport of Aluminum Oxide Nanoparticles in Saturated Sand: Effects of Ionic Strength, Flow Rate, and Nanoparticle Concentration,” Sci. Total Environ., 499, pp. 402–412. [CrossRef] [PubMed]
Zhang, L. , Hou, L. , Wang, L. , Kan, A. T. , Chen, W. , and Tomson, M. B. , 2012, “Transport of Fullerene Nanoparticles (nC60) in Saturated Sand and Sandy Soil: Controlling Factors and Modeling,” Environ. Sci. Technol., 46(13), pp. 7230–7238. [CrossRef] [PubMed]
Goldberg, E. , Scheringer, M. , Bucheli, T. D. , and Hungerbu¨hler, K. , 2014, “Critical Assessment of Models for Transport of Engineered Nanoparticles in Saturated Porous Media,” Environ. Sci. Technol., 48(21), pp. 12732–12741. [CrossRef] [PubMed]
Roy, S. B. , and Dzombak, D. A. , 1996, “Colloid Release and Transport Processes in Natural and Model Porous Media,” Colloids Surf. A: Physicochem. Eng. Aspects, 107, pp. 245–262. [CrossRef]
Grolimund, D. , Barmettler, K. , and Borkovec, M. , 2001, “Release and Transport of Colloidal Particles in Natural Porous Media—2: Experimental Results and Effects of Ligands,” Water Resour. Res., 37(3), pp. 571–582. [CrossRef]
Bergendahl, J. , and Grasso, D. , 2000, “Prediction of Colloid Detachment in a Model Porous Media: Hydrodynamics,” Chem. Eng. Sci., 55(9), pp. 1523–1532. [CrossRef]
Lenhart, J. J. , and Saiers, J. E. , 2003, “Colloid Mobilization in Water-Saturated Porous Media Under Transient Chemical Conditions,” Environ. Sci. Technol., 37(12), pp. 2780–2787. [CrossRef] [PubMed]
Tosco, T. , Tiraferri, A. , and Sethi, R. , 2009, “Ionic Strength Dependent Transport of Microparticles in Saturated Porous Media: Modeling Mobilization and Immobilization Phenomena Under Transient Chemical Conditions,” Environ. Sci. Technol., 43(12), pp. 4425–4431. [CrossRef] [PubMed]
Bradford, S. A. , Torkzaban, S. , Kim, H. , and Simunek, J. , 2012, “Modeling Colloid and Microorganism Transport and Release With Transients in Solution Ionic Strength,” Water Resour. Res., 48(9), p. W09509. [CrossRef]
Ju, B. , Dai, S. , Luan, Z. , Zhu, T. , Su, X. , and Qiu, X. , 2002, “A Study of Wettability and Permeability Change Caused by Adsorption of Nanometer Structured Polysilicon on the Surface of Porous Media,” SPE Asia Pacific Oil and Gas Conference and Exhibition, Melbourne, Australia, Oct. 8–10, SPE Paper No. SPE 77938.
Lenhart, J. J. , and Saiers, J. E. , 2002, “Transport of Silica Colloids Through Unsaturated Porous Media: Experimental Results and Model Comparisons,” Environ. Sci. Technol., 36(4), pp. 769–777. [CrossRef] [PubMed]
Šimůnek, J. , He, C. , Pang, L. , and Bradford, S. A. , 2006, “ Colloid-Facilitated Solute Transport in Variably Saturated Porous Media,” Vadose Zone J., 5(3), pp. 1035–1047. [CrossRef]
Torkzaban, S. , Bradford, S. A. , van Genuchten, M. T. , and Walker, S. L. , 2008, “Colloid Transport in Unsaturated Porous Media: The Role of Water Content and Ionic Strength on Particle Straining,” J. Contam. Hydrol., 96(1–4), pp. 113–127. [CrossRef] [PubMed]
Cheng, T. , and Saiers, J. E. , 2009, “Mobilization and Transport of In Situ Colloids During Drainage and Imbibition of Partially Saturated Sediments,” Water Resour. Res., 45, p. W08414.
Ju, B. , and Fan, T. , 2009, “Experimental Study and Mathematical Model of Nanoparticle Transport in Porous Media,” Powder Technol., 192(2), pp. 195–202. [CrossRef]
Kumahor, S. K. , Hron, P. , Metreveli, G. , Schaumann, G. E. , and Vogel, H. J. , 2015, “Transport of Citrate-Coated Silver Nanoparticles in Unsaturated Sand,” Sci. Total Environ., 535, pp. 113–121. [CrossRef] [PubMed]
Bradford, S. A. , and Leij, F. J. , 1997, “Estimating Interfacial Areas for Multi-Fluid Soil Systems,” J. Contam. Hydrol., 27(1–2), pp. 83–105. [CrossRef]
Schäfer, A. , Ustohal, P. , Harms, H. , Stauffer, F. , Dracos, T. , and Zehnder, A. J. , 1998, “Transport of Bacteria in Unsaturated Porous Media,” J. Contam. Hydrol., 33(1–2), pp. 149–169. [CrossRef]
Sim, Y. , and Chrysikopoulos, C. V. , 2000, “Virus Transport in Unsaturated Porous Media,” Water Resour. Res., 36(1), pp. 173–179. [CrossRef]
Kim, M. K. , Kim, S. B. , and Park, S. J. , 2008, “Bacteria Transport in an Unsaturated Porous Media: Incorporation of Air-Water Interface Area Model Into Transport Modeling,” Hydrol. Process., 22(13), pp. 2370–2376. [CrossRef]
Niemet, M. R. , Rockhold, M. L. , Weisbrod, N. , and Selker, J. S. , 2002, “Relationships Between Gas-Liquid Interfacial Surface Area, Liquid Saturation, and Light Transmission in Variably Saturated Porous Media,” Water Resour. Res., 38(8), p. 10. [CrossRef]
Ryan, J. N. , Illangasekare, T. H. , Litaor, M. I. , and Shannon, R. , 1998, “Particle and Plutonium Mobilization in Macroporous Soils During Rainfall Simulations,” Environ. Sci. Technol., 32(4), pp. 476–482. [CrossRef]
El-Farhan, Y. H. , DeNovio, N. M. , Herman, J. S. , and Hornberger, G. M. , 2000, “Mobilization and Transport of Soil Particles During Infiltration Experiments in an Agricultural Field, Shenandoah Valley, Virginia,” Environ. Sci. Technol., 34(17), pp. 3555–3559. [CrossRef]
Saiers, J. E. , and Lenhart, J. J. , 2003, “Colloid Mobilization and Transport Within Unsaturated Porous Media Under Transient-Flow Conditions,” Water Resour. Res., 39(1), p. 10. [CrossRef]
Shang, J. , Flury, M. , Chen, G. , and Zhuang, J. , 2008, “Impact of Flow Rate, Water Content, and Capillary Forces on In Situ Colloid Mobilization During Infiltration in Unsaturated Sediments,” Water Resour. Res., 44, p. W06411. [CrossRef]
Gao, B. , Saiers, J. E. , and Ryan, J. N. , 2004, “Deposition and Mobilization of Clay Colloids in Unsaturated Porous Media,” Water Resour. Res., 40, p. W08602. [CrossRef]
Bradford, S. A. , Wang, Y. , Torkzaban, S. , and Šimůnek, J. , 2015, “Modeling the Release of E. coli D21 g With Transients in Water Content,” Water Resour. Res., 51(5), pp. 3303–3316. [CrossRef]
Wang, Y. , Bradford, S. A. , and Simunek, J. , 2014, “Release of E. coli D21 g With Transients in Water Content,” Environ. Sci. Technol., 48(16), pp. 9349–9357. [CrossRef] [PubMed]
Karadimitriou, N. K. , 2013, “ Two-Phase Flow Experimental Studies in Micro-Models,” Ph.D. dissertation, Utrecht University, Utrecht, The Netherlands. https://dspace.library.uu.nl/handle/1874/275062
Allen , M. B., III , Behie, G. A. , and Trangenstein, J. A. , 1988, Multiphase Flow in Porous Media: Mechanics, Mathematics, and Numerics, Springer-Verlag, New York.
Delgado, J. M. P. Q. , 2006, “A Critical Review of Dispersion in Packed Beds,” Heat Mass Transfer, 42(4), pp. 279–310. [CrossRef]
Delgado, J. M. P. Q. , 2007, “Longitudinal and Transverse Dispersion in Porous Media,” Chem. Eng. Res. Des., 85(9), pp. 1245–1252. [CrossRef]
Bijeljic, B. , Muggeridge, A. H. , and Blunt, M. J. , 2004, “ Pore-Scale Modeling of Longitudinal Dispersion,” Water Resour. Res., 40(11), p. W11501. [CrossRef]
Mehmani, Y. , Oostrom, M. , and Balhoff, M. T. , 2014, “A Streamline Splitting Pore-Network Approach for Computationally Inexpensive and Accurate Simulation of Transport in Porous Media,” Water Resour. Res., 50(3), pp. 2488–2517. [CrossRef]
Bultreys, T., Van Hoorebeke, L., and Cnudde, V., 2015, “Multi-Scale, Micro-Computed Tomography-Based Pore Network Models to Simulate Drainage in Heterogeneous Rocks,” Adv. Water Resour., 78, pp. 36–49.
Yang, H. , and Balhoff, M. T. , 2017, “ Pore-Network Modeling of Particle Retention in Porous Media,” AIChE J., 63(7), pp. 3118–3131. [CrossRef]
Wopara, O. F. , and Iyuke, S. E. , 2018, “Review of Studies on Pore-Network Modeling of Wettability Effects on Waterflood Oil Recovery,” J. Pet. Gas Eng., 9(2), pp. 11–22. [CrossRef]
Xiong, Q. , Baychev, T. G. , and Jivkov, A. P. , 2016, “Review of Pore Network Modelling of Porous Media: Experimental Characterisations, Network Constructions and Applications to Reactive Transport,” J. Contam. Hydrol., 192, pp. 101–117. [CrossRef] [PubMed]
Meng, X. , and Yang, D. , 2018, “Dynamic Dispersion Coefficient of Solutes Flowing in a Circular Tube and a Tube-Bundle Model,” ASME J. Energy Resour. Technol., 140(1), p. 012903. [CrossRef]
Taylor, G. , 1953, “Dispersion of Soluble Matter in Solvent Flowing Slowly Through a Tube,” Proc. R. Soc. London A: Math., Phys. Eng. Sci., 219(1137), pp. 186–203.
Aris, R. , 1956, “On the Dispersion of a Solute in a Fluid Lowing Through a Tube,” Proc. R. Soc. London A: Math., Phys. Eng. Sci., 235(1200), pp. 67–77.
Barton, N. G. , 1983, “On the Method of Moments for Solute Dispersion,” J. Fluid Mech., 126(1), pp. 205–218. [CrossRef]
James, S. C. , and Chrysikopoulos, C. V. , 2003, “Effective Velocity and Effective Dispersion Coefficient for Finite-Sized Particles Flowing in a Uniform Fracture,” J. Colloid Interface Sci., 263(1), pp. 288–295. [CrossRef] [PubMed]
Meng, X. , and Yang, D. , 2016, “Determination of Dynamic Dispersion Coefficient for Particles Flowing in a Parallel-Plate Fracture,” Colloids Surf. A: Physicochem. Eng. Aspects, 509, pp. 259–278. [CrossRef]
Meng, X. , and Yang, D. , 2017, “Determination of Dynamic Dispersion Coefficients for Passive and Reactive Particles Flowing in a Circular Tube,” Colloids Surf. A: Physicochem. Eng. Aspects, 524, pp. 96–110. [CrossRef]
Shvidler, M. , and Karasaki, K. , 2003, “Probability Density Functions for Solute Transport in Random Field,” Transp. Porous Media, 50(3), pp. 243–266. [CrossRef]
Mehmani, Y. , and Balhoff, M. T. , 2015, “Eulerian Network Modeling of Longitudinal Dispersion,” Water Resour. Res., 51(10), pp. 8586–8606. [CrossRef]
Bear, J. , 1972, Dynamics of Fluids in Porous Media, Elsevier, New York.
Lugo-Mendez, H. D. , Valdes-Parada, F. J. , and Ochoa-Tapia, J. A. , 2013, “An Analytical Expression for the Dispersion Coefficient in Porous Media Using Chang's Unit Cell,” J. Porous Media, 16(1), pp. 29–40. [CrossRef]
Freund, H. , Bauer, J. , Zeiser, T. , and Emig, G. , 2005, “Detailed Simulation of Transport Processes in Fixed-Beds,” Ind. Eng. Chem. Res., 44(16), pp. 6423–6434. [CrossRef]
Wood, B. D. , 2007, “Inertial Effects in Dispersion in Porous Media,” Water Resour. Res., 43(12), p. W12S16. [CrossRef]
Auset, M. , and Keller, A. A. , 2004, “ Pore-Scale Processes That Control Dispersion of Colloids in Saturated Porous Media,” Water Resour. Res., 40(3), p. W03503. [CrossRef]
Baumann, T. , Toops, L. , and Niessner, R. , 2010, “Colloid Dispersion on the Pore Scale,” Water Res., 44(4), pp. 1246–1254. [CrossRef] [PubMed]
Chrysikopoulos, C. V. , and Katzourakis, V. E. , 2015, “Colloid Particle Size-Dependent Dispersivity,” Water Resour. Res., 51(6), pp. 4668–4683. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Conceptual model of colloid retention mechanisms in unsaturated porous media. Reprinted with permission from Wan and Tokunaga [59]. Copyright (1997) American Chemical Society: (1) SWI adsorption; (2) straining filtration; (3) AWI adsorption; (4) AWS/AWmS interface 2 adsorption; and (5) film straining.

Grahic Jump Location
Fig. 2

(a) Conceptual diagram of AWmS interface on two sand grains. Reprinted with permission from Zevi et al. [64]. Copyright (2005) American Chemical Society and (b) Observed colloid retention sites in unsaturated sand columns at 50 mM ionic strength and at the end of 20 mL colloid injection. Reprinted with permission from Zhang et al. [69]. Copyright (2013) American Chemical Society: (1) SWI; (2) grain–grain contact; (3) AWI; and (4) AWS interface.

Grahic Jump Location
Fig. 3

Normalized effluent concentrations of poly-acrylic acid coated nanoparticles versus moveable pore volume for Boise sandstone. Nanoparticle suspension (0.2 wt%, pH = 9) was injected, followed by de-ionized water with the same pH (Modified from Yu [74]).

Grahic Jump Location
Fig. 4

Particle transport in geochemically heterogeneous porous media. Experimental particle breakthrough curves correspond to columns packed with various fractions of iron oxyhydroxide-coated sand shown in the figure. Reprinted with permission from Johnson et al. [115]. Copyright (1996) American Chemical Society.

Grahic Jump Location
Fig. 5

Digitized RPs (dots) and fitted model results (lines) are presented in panels 1a, 2a, 3a, and 4a; digitized breakthrough curves (dots) and model-derived breakthrough curves (lines) are presented in panels 1b, 2b, 3b, and 4b. Note that the y-axis of panel 1a is presented at a ten fold reduced scale in comparison to panels 2a, 3a, and 4a. Mass balances reported by the original authors for the retained (MR) and the effluent fraction (ME) are shown in panels 1a–4a and panels 1b − 4b, respectively. Reprinted with permission from Goldberg et al. [135]. Copyright (2014) American Chemical Society.

Grahic Jump Location
Fig. 6

Fitted curves to effective saturation versus specific AWI area using different models (adapted from Kim et al. [152])

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In