0

Newest Issue


Research Papers: Alternative Energy Sources

J. Energy Resour. Technol. 2017;140(5):051201-051201-17. doi:10.1115/1.4037813.

The splitter blades are very common to use for centrifugal compressor impellers to improve the compressor performance and manufacturing capability. In this study, a low-flow single-stage centrifugal compressor with a vaneless diffuser was used to investigate the location effects of the impeller splitter between two main blades. It is demonstrated that the splitter position provides an opportunity to improve the compressor performance and reduce the operational cost. The splitter location optimizations were performed numerically, and the optimal splitter location was identified. A prototype was built for the impeller with optimal splitter position. The performance tests were performed, and test results are compared with numerical analyses. The studies indicated that splitter positions have impacts on the compressor stage performances. The studies showed that the traditional splitter located in the middle of the two main blades is not the optimal location for aerodynamic performance. The splitter location optimization provided the opportunity to improve the centrifugal compressor performance further.

Commentary by Dr. Valentin Fuster
J. Energy Resour. Technol. 2017;140(5):051202-051202-13. doi:10.1115/1.4038119.

A fast-growing worldwide interest is directed toward green energies. Due to the huge costs of wind farms establishment, the location for wind farms should be carefully determined to achieve the optimum return of investment. Consequently, researches have been conducted to investigate land suitability prior to wind plants development. The generated data from the sensors detecting a potential land can be very huge, fast in generation, heterogeneous, and incomplete, which become seriously difficult to process using traditional approaches. In this paper, we propose Trio-V Wind Analyzer (WA) that handles data volume, variety, and veracity to identify the most suitable location for wind energy development in any study area using a modified version of multicriteria evaluation (MCE). It utilizes principal component analysis (PCA) and our proposed Double-Reduction Optimum Apriori (DROA) to analyze most of the environmental, physical, and economical criteria. In addition, Trio-V WA recommends the suitable turbines and proposes the adequate turbines’ layout distribution, predicting the expected power generated based on the recommended turbine’s specifications using a regression technique. Thus, Trio-V WA provides an integral system of land evaluation for potential investment in wind farms. Experiments indicate 80% and 95% average accuracy for land suitability degree and power prediction, respectively, with efficient performance.

Topics: Turbines , Wind , Wind farms , Design
Commentary by Dr. Valentin Fuster

Research Papers: Energy From Biomass

J. Energy Resour. Technol. 2017;140(5):051801-051801-9. doi:10.1115/1.4038313.
FREE TO VIEW

Chlorine plays an important role in the slagging and corrosion of boilers that burn high-chlorine content biomass. This research investigated the emissions of hydrogen chloride (HCl) gas from combustion of biomass in a fixed bed, as functions of the mass air flow rate through the bed and of the moisture content of the fuel. The biomass burned was corn straw, either raw or torrefied. Results showed that increasing the air flow rate through the bed increased the release of HCl gas, as a result of enhanced combustion intensity and associated enhanced heat release rates. When the airflow through the bed was increased by a factor of six, the amount of fuel-bound chlorine converted to HCl nearly tripled. Upon completion of combustion, most of the chlorine remained in the biomass ashes, with the exception of the highest air flow case where the fraction of chlorine released in HCl equaled that captured in the ashes. HCl emissions from torrefied biomass were found to be lower than those from raw biomass. Finally, drying the biomass proved to be beneficial in drastically curtailing the generation of HCl gas.

Commentary by Dr. Valentin Fuster

Research Papers: Energy Systems Analysis

J. Energy Resour. Technol. 2017;140(5):052001-052001-15. doi:10.1115/1.4038236.

Boiler's efficiency is one of the important performance indicators of boiler. To keep track of operation cost, efficiency needs to be calculated with adequate accuracy by employing effective mathematical tools. In this work, a new modification in conventional mathematical formulation of efficiency is presented based on time-varying efficiency using time-varying operational variables of boiler. This modification was accomplished using indirect method of efficiency by applying experimental data of variables for certain time span. Moreover a second-order dynamic model of flue gas temperature (FGT) has been derived to construct the mathematical formulation of efficiency only in terms of available inputs. The resulting input–output-based model proved to be in quite agreement with efficiency calculated from experimental data. After modeling, influence of variations in air to fuel ratio (AFR) and fuel flow rate (FFR) upon efficiency has been discussed and it has been shown that time-varying efficiency covers deeper aspect of dynamic relation between efficiency and other input of boiler especially AFR and FFR. Moreover, it has been established that efficiency interacts with the dynamics of boiler, and in this respect, a dynamic relation between combustion process and boiler dynamics has been constructed via efficiency.

Commentary by Dr. Valentin Fuster
J. Energy Resour. Technol. 2017;140(5):052002-052002-13. doi:10.1115/1.4037369.

This paper presents the approach of thermoeconomic analysis of centralized cold generation in trigeneration system integrated with steam-powered absorption chillers (ACs). The analysis was conducted for real back-pressure combined heat and power (CHP) unit BC-50 and single-effect absorption refrigerators using water and lithium bromide as the working fluids. It has been assumed that the heating medium supplied to the chiller generator is technological steam from the existing steam bleeding. The calculations take into account changes of energy demand for heating and cooling for each month of the year. Mathematical simulation models of cogeneration and trigeneration systems have been developed with the commercial program for power plant simulation EBSILON Professional. System effects of heat and electricity cogeneration and cogeneration with additional cold production have been calculated compared to separate production of heat, electricity, and cold (replaced heating plant and power unit). The effect of trigeneration has been assessed quantitatively by the coefficient of the increasing cogeneration effects, which has been calculated as a ratio of chemical energy savings of fuels to the demand for heat by the consumers in the cases of trigeneration and cogeneration. This paper includes also analysis of economic effectiveness of a trigeneration system with ACs for cold agent production. The results of economic calculations show that an acceptable payback period of approximately 13 yr for a CHP and absorption system may be achieved. Discounted payback (DPB) is equal to the half of assumed operating time of the system. Sensitivity analysis shows that the most important impact on profitability is the selling price of cold and the purchase of fuel—hard coal.

Commentary by Dr. Valentin Fuster

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In