Experimental adiabatic two-phase pressure drops data for refrigerants R134a, R236fa and R245fa during flow boiling in small channels with internal diameters of 1.03, 2.20 and 3.04 mm are presented. The main purpose was to investigate the effects of channel confinement on adiabatic two-phase pressure drops. Thus, the two-phase pressure drop trends were systematically investigated over a wide range of test conditions for all three refrigerants and channel sizes. Statistical comparisons have also been made by comparing the experimental pressure drop data database with various macroscale and microscale prediction methods from the literature. The comparison showed relatively moderate accuracy for three prediction methods developed for macroscale flows, i.e. Baroczy and Chisholm, Friedel and the homogeneous model with the Cicchitti et al. viscosity relation. As for microscale prediction methods, the Cioncolini et al. annular flow model worked best with 68.5% of the data within ± 30%, followed by the Sun and Mishima and the Zhang et al. methods. Combining this database with the LTCM lab’s earlier database for 0.509 and 0.790 mm channels, there appears to be no evidence of a macro-to-microscale transition, at least with respect to two-phase pressure drops.

This content is only available via PDF.
You do not currently have access to this content.