The work presented here details the development of a wireless instrumentation architecture for direct gait measurement in a transfemoral prosthesis. The system comprises a pair of multi-axis load cells located proximal to the ankle and knee joints of the prosthesis that provide a measure of moments and axial force above and below the prosthetic knee. The kinetic measurements are supplemented with knee kinematics measured using a modular goniometer attached lateral to the prosthetic knee and ground contact as indicated with a pneumatic sensor at the prosthetic heel. Each instrument wirelessly transmits collected data to host PCs, enabling direct gait measurements free of the constraints of a conventional gait laboratory setting. The data acquisition system was evaluated with a single subject with unilateral transfemoral amputation walking with a polycentric knee, composite energy-return foot, and daily-use socket. Experimental results were collected for the subject walking through a theater, enabling the rapid acquisition of gait data for level-ground walking and incline ascent/descent without the need for a motion-capture camera array or floor-embedded force plates.
- Dynamic Systems and Control Division
An Architecture for Direct Measurement of Transfemoral Prosthesis Gait Beyond the Gait Laboratory Setting
Gacioch, JA, Fite, KB, Arabian, AK, Kobayashi, T, Boone, DA, & Orendurff, MS. "An Architecture for Direct Measurement of Transfemoral Prosthesis Gait Beyond the Gait Laboratory Setting." Proceedings of the ASME 2014 Dynamic Systems and Control Conference. Volume 1: Active Control of Aerospace Structure; Motion Control; Aerospace Control; Assistive Robotic Systems; Bio-Inspired Systems; Biomedical/Bioengineering Applications; Building Energy Systems; Condition Based Monitoring; Control Design for Drilling Automation; Control of Ground Vehicles, Manipulators, Mechatronic Systems; Controls for Manufacturing; Distributed Control; Dynamic Modeling for Vehicle Systems; Dynamics and Control of Mobile and Locomotion Robots; Electrochemical Energy Systems. San Antonio, Texas, USA. October 22–24, 2014. V001T06A003. ASME. https://doi.org/10.1115/DSCC2014-6268
Download citation file: