Stirred vessels are devices that find extensive industrial applications particularly in mineral and chemical industries. Interactions of solid particles and/or bubbles and particles depend on the characteristics of turbulent flow. In many analytical models, the rate of collision is a function of turbulence dissipation. It has been known that dissipation levels are much higher in the neighborhood of the agitating mechanism, in our case the Rushton impeller. In this paper we use time-resolved DPIV to measure the velocity field with a spatial resolution down to 100 μm, and a frequency resolution of 500 Hz. The range of Reynolds numbers investigated varied from 20,000 to 50,000, with the smallest Kolmogorov length scale of about 15 μm. The flow in the impeller stream of a Rushton impeller can be best summarized as a radial jet with a pair of convecting tip vortices. The turbulence quantities were found by removing the periodic component from the blade passing, which is the dominant part of the measured velocities. Dissipation was calculated from the velocity gradients, and assuming isotropy. We provide further evidence that larger dissipation values in the vicinity of the impeller are consistent with the dynamic motion generated by the blade passage. This is somewhat anti-intuitive, because energy is dissipated at the smallest eddy scales, and the immediate vicinity of the impeller contains large vortical structures and provides little space or time for such structures to break down. The maximum and mean normalized dissipation in the impeller stream showed decreasing trends with the Reynolds number. Other normalized turbulence quantities, namely Vrms and in plane vorticity are presented. Our experiments agree very well with other experimental studies. Estimates of turbulence characteristics and in particular distributions of turbulent energy dissipation determined in this study will be used in estimating rates of collisions of bubbles and particles in stirred vessels.

This content is only available via PDF.
You do not currently have access to this content.