Numerical methods for predicting heterogeneous bubbly flows are indispensable for the design of a Fisher-Tropsh reactor for GTL (Gas To Liquid). It is necessary to take into account bubble size distribution determined by bubble coalescence and breakup for the accurate prediction of heterogeneous bubbly flows. Hence we implemented several bubble coalescence and breakup models into the (N+2) field model, which is a hybrid combination of an interface tracking method and a multi-fluid model. Void and bubble size distributions in an open rectangular bubble column were measured and compared with predicted ones. As a result, the following conclusions were obtained: (1) Void and bubble size distributions were not affected by inlet bubble sizes because the bubble size distribution reaches an equilibrium state at which the birth rate is equal to the death rate, and (2) the combination of Luo’s bubble breakup model and a coalescence model consisting of Prince & Blanch’s model and Wang’s wake entrainment model gave good predictions.

This content is only available via PDF.
You do not currently have access to this content.