We are here concerned by the primary break-up of a jet: a lot of topological changes occur and the Level Set Method thus appears well designed for our purpose. To describe the interface discontinuities, we use the Ghost Fluid Method (GFM) and a projection method is used to solve incompressible Navier-Stokes equations that are coupled to a transport equation for the level set function. The main drawback of level set methods is that numerical computations in the re-distancing algorithm can generate mass loss in under-resolved regions. To improve mass conservation extension of the method can be developed, namely a coupling between VOF and Level Set. In order to illustrate the abilities of the Level Set/VOF/Ghost Fluid method for interface tracking, we present a 3D simulation of the primary atomization zone of a turbulent liquid jet. The turbulence initiates some perturbations on the liquid surface, that are enhanced by the mean shear and break-up occurs. The generated liquid parcels show a wide range of shapes. Particular behaviors such ligament detachments, droplet formations and break up are described.

This content is only available via PDF.
You do not currently have access to this content.