In the present study, numerical simulations of the free-surface flow, developing by the propagation of nonlinear water waves over a rippled bottom, are performed assuming that the corresponding flow is two-dimensional, incompressible and viscous. The simulations are based on the numerical solution of the Navier-Stokes equations subject to the fully-nonlinear free-surface boundary conditions and the suitable bottom, inflow and outflow boundary conditions. The equations are properly transformed so that the computational domain becomes time-independent. For the spatial discretization, a hybrid scheme with finite-differences and Chebyshev polynomials is applied, while a fractional time-step scheme is used for the temporal discretization. A wave absorption zone is placed at the outflow region in order to efficiently minimize reflection of waves by the outflow boundary. The numerical model is validated by comparison to the analytical solution for the laminar, oscillatory, current flow which develops a uniform boundary layer over a horizontal bottom. For the propagation of finite-amplitude waves over a rigid rippled bed, the case with wavelength to water depth ratio λ/d0 = 6 and wave height to wavelength ratio H0/λ = 0.05 is considered. The ripples have parabolic shape, while their dimensions — length and height — are chosen accordingly to fit laboratory and field data. Results indicate that the wall shear stress over the ripples and the form drag forces on the ripples increase with increasing ripple height, while the corresponding friction force is insensitive to this increase. Therefore, the percentage of friction in the total drag force decreases with increasing ripple height.

This content is only available via PDF.
You do not currently have access to this content.